Zobrazeno 1 - 10
of 659
pro vyhledávání: '"Brock F"'
Autor:
Rachel Cooley, Neesha Kara, Ning Sze Hui, Jonathan Tart, Chloë Roustan, Roger George, David C. Hancock, Brock F. Binkowski, Keith V. Wood, Mohamed Ismail, Julian Downward
Publikováno v:
Wellcome Open Research, Vol 5 (2020)
Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLuc ® Binary Technology (NanoBiT ®) was originally developed to detect protein-protein interactions i
Externí odkaz:
https://doaj.org/article/5503a49d093b446fb52832b3b3a2efee
Autor:
Stefanie Galbán, Yong Hyun Jeon, Brittany M Bowman, James Stevenson, Katrina A Sebolt, Lisa M Sharkey, Michael Lafferty, Benjamin A Hoff, Braeden L Butler, Susan S Wigdal, Brock F Binkowski, Paul Otto, Kris Zimmerman, Gediminas Vidugiris, Lance P Encell, Frank Fan, Keith V Wood, Craig J Galbán, Brian D Ross, Alnawaz Rehemtulla
Publikováno v:
PLoS ONE, Vol 8, Iss 6, p e66248 (2013)
In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of protease
Externí odkaz:
https://doaj.org/article/92a47bc9999a43418aeead5d0ff96642
Publikováno v:
Journal of Inequalities and Applications, Vol 1999, Iss 3, p 670245 (1999)
We prove an inequality of the form , where is a bounded domain in with smooth boundary, is a ball centered in the origin having the same measure as . From this we derive inequalities comparing a weighted Sobolev norm of a given function with the norm
Externí odkaz:
https://doaj.org/article/16961a51ebb9480997e763e843e82772
We solve a class of isoperimetric problems on $\mathbb{R}^N $ with respect to weights that are powers of the distance to the origin. For instance we show that if $k\in [0,1]$, then among all smooth sets $\Omega$ in $\mathbb{R} ^N$ with fixed Lebesgue
Externí odkaz:
http://arxiv.org/abs/1606.02195
In this paper we prove symmetry results for minimizers of a non coercive functional defined on the class of Sobolev functions with zero mean value. We prove that the minimizers are foliated Schwarz symmetric, i.e. they are axially symmetric with resp
Externí odkaz:
http://arxiv.org/abs/1601.07327
Publikováno v:
In Annales de l'Institut Henri Poincaré / Analyse non linéaire March-April 2021 38(2):347-368
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 August 2020 488(2)
Autor:
Brock, F., Ostapkowicz, J., Collinson, M.E., Bull, I.D., Dyer, C., Lane, D.W., Domoney, K., Uden, J.
Publikováno v:
In Journal of Archaeological Science: Reports August 2020 32
Denote with $\mu_{1}(\Omega;e^{h\left(|x|\right)})$ the first nontrivial eigenvalue of the Neumann problem \begin{equation*} \left\{\begin{array}{lll} -\text{div}\left(e^{h\left(|x|\right)}\nabla u\right) =\mu e^{h\left(|x|\right)}u & \text{in} & \Om
Externí odkaz:
http://arxiv.org/abs/1411.5872
Publikováno v:
In Journal of Differential Equations 5 December 2019 267(12):6831-6871