Zobrazeno 1 - 10
of 148
pro vyhledávání: '"Brito, Fabiano"'
Publikováno v:
Comptes Rendus. Mathématique, Vol 359, Iss 10, Pp 1225-1232 (2022)
We provide a lower value for the volume of a unit vector field tangent to an antipodally punctured Euclidean sphere $\mathbb{S}^2$ depending on the length of an ellipse determined by the indexes of its singularities. We also exhibit minimizing vector
Externí odkaz:
https://doaj.org/article/945dfda2ac7c4ce8a83e228d08dbd90c
We provide a lower value for the volume of a unit vector field tangent to an antipodally Euclidean sphere $\mathbb{S}^2$ depending on the length of an ellipse determined by the indexes of its singularities.
Comment: This paper concerns a new ver
Comment: This paper concerns a new ver
Externí odkaz:
http://arxiv.org/abs/2102.11128
We provide a lower value for the volume of a unit vector field tangent to an antipodally Euclidean sphere $\mathbb{S}^2$ depending on the length of an ellipse determined by the indexes of its singularities. In addition, for minimizing vector fields h
Externí odkaz:
http://arxiv.org/abs/2011.05183
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Brito, Fabiano Carvalho de
Publikováno v:
Biblioteca Digital de Teses e Dissertações da PUC_RSPontifícia Universidade Católica do Rio Grande do SulPUC_RS.
Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2015-05-07T18:57:30Z No. of bitstreams: 1 468106 - Texto Parcial.pdf: 891418 bytes, checksum: 13bcdf3602d01f9b50fff916a21f4be2 (MD5)
Made available in DSpace on 2015-0
Made available in DSpace on 2015-0
Externí odkaz:
http://tede2.pucrs.br/tede2/handle/tede/5986
For $n\geq 1$, we exhibit a lower bound for the volume of a unit vector field on $\mathbb{S}^{2n+1}\backslash\{\pm p\}$ depending on the absolute values of its Poincar\'e indices around $\pm p$. We determine which vector fields achieve this volume, a
Externí odkaz:
http://arxiv.org/abs/1708.01575
For a unit vector field on a closed immersed Euclidean hypersurface $M^{2n+1}$, $n\geq 1$, we exhibit a nontrivial lower bound for its energy which depends on the degree of the Gauss map of the immersion. When the hypersurface is the unit sphere $\ma
Externí odkaz:
http://arxiv.org/abs/1703.03263
Publikováno v:
Repositório Institucional da UnicampUniversidade Estadual de CampinasUNICAMP.
Orientador: Eduardo Dias de Andrade
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-24T16:11:06Z (GMT). No. of bitstreams: 1 Brito_FabianoCapatode_D.pdf: 12266
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-24T16:11:06Z (GMT). No. of bitstreams: 1 Brito_FabianoCapatode_D.pdf: 12266
Externí odkaz:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/290772
In this short note we prove that the degree of the Gauss map {\nu} of a closed 3-dimensional hypersurface of the Euclidean space is a lower bound for the total bending functional B, introduced by G. Wiegmink. Consequently, the energy functional E int
Externí odkaz:
http://arxiv.org/abs/1609.04900
Autor:
Brito, Fabiano G. B., Gonçalves, Icaro
Given a unit vector field on a closed Euclidean hypersurface, we define a map from the hypersurface to a sphere in the Euclidean space. This application allows us to exhibit a list of topological invariants which combines the second fundamental form
Externí odkaz:
http://arxiv.org/abs/1609.04670