Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Briand, Emmanuel"'
Autor:
Briand, Emmanuel, Esquivias-Quintero, Luis, Gutiérrez, Álvaro, Lillo, Adrián, Rosas, Mercedes
We present the first combinatorial proof of the Graham-Pollak Formula for the determinant of the distance matrix of a tree, via sign-reversing involutions and the Lindstr\"om-Gessel-Viennot Lemma. Our approach provides a cohesive and unified framewor
Externí odkaz:
http://arxiv.org/abs/2407.01227
The $\mathit{SU}(3)$ tensor multiplicities are piecewise polynomial of degree $1$ in their labels. The pieces are the chambers of a complex of cones. We describe in detail this chamber complex and determine the group of all linear symmetries (of orde
Externí odkaz:
http://arxiv.org/abs/2305.08188
Autor:
Briand, Emmanuel
Publikováno v:
Discrete Applied Mathematics, vol. 314, 162-168 (2022)
We give three proofs of the following result conjectured by Carriegos, De Castro-Garc\'{\i}a and Mu\~noz Casta\~neda in their work on enumeration of control systems: when $\binom{k+1}{2} \le n < \binom{k+2}{2}$, there are as many partitions of $n$ wi
Externí odkaz:
http://arxiv.org/abs/2004.13180
Autor:
Briand, Emmanuel, Rosas, Mercedes
We compute with SageMath the group of all linear symmetries for the Littlewood-Richardson associated to the representations of $SL_3$. We find that there are 144 symmetries, more than the 12 symmetries known for the Littlewood-Richardson coefficients
Externí odkaz:
http://arxiv.org/abs/2004.04995
We investigate the combinatorics of the general formulas for the powers of the operator $h \partial^k$, where $h$ is a central element of a ring and $\partial$ is a differential operator. This generalizes previous work on the powers of operators $h \
Externí odkaz:
http://arxiv.org/abs/1811.00857
This text is an appendix to our work "On the growth of Kronecker coefficients", arXiv:1607.02887. Here, we provide some complementary theorems, remarks, and calculations that for the sake of space are not going to appear into the final version of our
Externí odkaz:
http://arxiv.org/abs/1611.07348
We study the rate of growth experienced by the Kronecker coefficients as we add cells to the rows and columns indexing partitions. We do this by moving to the setting of the reduced Kronecker coefficients.
Comment: Extended version, Containing 4
Comment: Extended version, Containing 4
Externí odkaz:
http://arxiv.org/abs/1607.02887
Publikováno v:
S\'eminaire Lotharingien de combinatoire, vol.80, article B80d (2019)
We study the commutation relations and normal ordering between families of operators on symmetric functions. These operators can be naturally defined by the operations of multiplication, Kronecker product, and their adjoints. As applications we give
Externí odkaz:
http://arxiv.org/abs/1509.02581
Publikováno v:
In Journal of Pure and Applied Algebra August 2020 224(8)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.