Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Brian Kulis"'
Publikováno v:
2022 Picture Coding Symposium (PCS).
Autor:
Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J. Leung, Jim Brandt, Brian Kulis, Ayse K. Coskun
Publikováno v:
2022 IEEE International Conference on Cluster Computing (CLUSTER).
Autor:
Christin Jose, Joe Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, Brian Kulis
Conversational agents commonly utilize keyword spotting (KWS) to initiate voice interaction with the user. For user experience and privacy considerations, existing approaches to KWS largely focus on accuracy, which can often come at the expense of in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52cec781445eee1f25c1cee5acceca29
http://arxiv.org/abs/2206.07261
http://arxiv.org/abs/2206.07261
Autor:
Mohammad Omar Khursheed, Christin Jose, Rajath Kumar, Gengshen Fu, Brian Kulis, Santosh Kumar Cheekatmalla
Publikováno v:
2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).
In this work, we propose Tiny-CRNN (Tiny Convolutional Recurrent Neural Network) models applied to the problem of wakeword detection, and augment them with scaled dot product attention. We find that, compared to Convolutional Neural Network models, F
Autor:
Prakash Ishwar, Mertcan Cokbas, Minxu Peng, Brian Kulis, Unay Dorken Gallastegi, Janusz Konrad, Vivek K Goyal
Publikováno v:
MLSP
Most research on deep learning algorithms for image denoising has focused on signal-independent additive noise. Focused ion beam (FIB) microscopy with direct secondary electron detection has an unusual Neyman Type A (compound Poisson) measurement mod
Publikováno v:
arXiv
Bayesian nonparametrics are a class of probabilistic models in which the model size is inferred from data. A recently developed methodology in this field is small-variance asymptotic analysis, a mathematical technique for deriving learning algorithms
Autor:
Thibaud Senechal, Geng-Shen Fu, Yuriy Mishchenko, Anish Shah, Hongyi Liu, Shiv Naga Prasad Vitaladevuni, Noah D. Stein, Brian Kulis, Apurva Abhyankar
Publikováno v:
INTERSPEECH
Publikováno v:
INTERSPEECH
Publikováno v:
INTERSPEECH
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585976
ECCV (8)
ECCV (8)
Photorealistic style transfer is the task of transferring the artistic style of an image onto a content target, producing a result that is plausibly taken with a camera. Recent approaches, based on deep neural networks, produce impressive results but
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::93d75ba12562446aa3c06d533fb9e057
https://doi.org/10.1007/978-3-030-58598-3_20
https://doi.org/10.1007/978-3-030-58598-3_20