Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Brian Krummel"'
We study the regularity of the free boundary in the obstacle for the p-Laplacian, min { − Δ p u , u − φ } = 0 in Ω ⊂ R n . Here, Δ p u = div ( | ∇ u | p − 2 ∇ u ) , and p ∈ ( 1 , 2 ) ∪ ( 2 , ∞ ) . Near those free boundary po
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e06106a833925e3f4815666110f6c6f
Autor:
Brian Krummel
Publikováno v:
Calculus of Variations and Partial Differential Equations. 51:525-537
Let $N$ be a Riemannian manifold and consider a stationary union of three or more $C^{1,\mu}$ hypersurfaces-with-boundary $M_k$ in $N$ with a common boundary $\Gamma$. We show that if $N$ is smooth, then $\Gamma$ is smooth and each $M_k$ is smooth up
Autor:
Brian Krummel
Let $N$ be a smooth $(n+l)$-dimensional Riemannian manifold. We show that if $V$ is an area-stationary union of three or more $C^{1,\mu}$ $n$-dimensional submanifolds-with-boundary $M_k \subset N$ with a common boundary $\Gamma$, then $\Gamma$ is smo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5fc49f584c6ef112daf5553972313b7
Publikováno v:
Pacific Journal of Mathematics. 231:63-84
We obtain the isoperimetric profile for the standard initial slices in the Reissner‐Nordstrom and Schwarzschild anti-de Sitter spacetimes, following recent work of Bray and Morgan on isoperimetric comparison. We then discuss these results in the co
Autor:
Brian Krummel
We extend the work of Simon and Wickramasekera, who constructed a large class of $C^{1,\mu}$ multivalued solutions to the minimal surface equation, to produce $C^{1,\mu}$ multivalued solutions to more general classes of elliptic equations and systems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57940352fa91898da2046f7f85da8537
http://arxiv.org/abs/1309.6233
http://arxiv.org/abs/1309.6233