Zobrazeno 1 - 10
of 180
pro vyhledávání: '"Bresciani, Marco"'
Autor:
Bresciani, Marco, Stroffolini, Bianca
We investigate the variational model for nematic elastomer proposed by Barchiesi and DeSimone with the director field defined on the deformed configuration under general growth conditions on the elastic density. This leads us to consider deformations
Externí odkaz:
http://arxiv.org/abs/2408.14911
Autor:
Bresciani, Marco, Friedrich, Manuel
We propose a model for quasistatic growth of cavities and cracks in two-dimensional nonlinear elasticity. Cavities and cracks are modeled as discrete and compact subsets of a planar domain, respectively, and deformations are defined only outside of c
Externí odkaz:
http://arxiv.org/abs/2406.11293
We investigate the existence of minimizers of variational models with Eulerian-Lagrangian formulations. We consider energy functionals depending on the deformation of a body, defined on its reference configuration, and an Eulerian map defined on the
Externí odkaz:
http://arxiv.org/abs/2402.12870
Autor:
Bresciani, Marco
We study a variational model of magnetoelasticity both in the static and in the quasistatic setting. The model features a mixed Eulerian-Lagrangian formulation, as magnetizations are defined on the deformed configuration in the actual space. The magn
Externí odkaz:
http://arxiv.org/abs/2203.08744
Autor:
Bresciani, Marco, Kružík, Martin
We investigate the problem of dimension reduction for plates in nonlinear magnetoelasticity. The model features a mixed Eulerian-Lagrangian formulation, as magnetizations are defined on the deformed set in the actual space. We consider low-energy con
Externí odkaz:
http://arxiv.org/abs/2109.04864
We investigate variational problems in large-strain magnetoelasticity, both in the static and in the quasistatic setting. The model contemplates a mixed Eulerian-Lagrangian formulation: while deformations are defined on the reference configuration, m
Externí odkaz:
http://arxiv.org/abs/2103.16261
Autor:
Bresciani, Marco
Publikováno v:
Mathematical Models and Methods in Applied Sciences, Vol. 31, No. 10 (2021)
We study the asymptotic behaviour, in the sense of $\Gamma$-convergence, of a thin incompressible magnetoelastic plate, as its thickness goes to zero. We focus on the linearized von K\'arm\'an regime. The model features a mixed Eulerian-Lagrangian fo
Externí odkaz:
http://arxiv.org/abs/2007.14122
Autor:
Bresciani, Marco
Publikováno v:
Philosophy & Social Criticism; May2024, Vol. 50 Issue 4, p584-596, 13p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.