Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Brenner, Sofia"'
Autor:
Behrooznia, Nastaran, Brenner, Sofia, Merino, Arturo, Mütze, Torsten, Rieck, Christian, Verciani, Francesco
We construct facet-Hamiltonian cycles in the $B$-permutahedron, resolving a conjecture raised in a recent paper by Akitaya, Cardinal, Felsner, Kleist and Lauff [arxiv.org/abs/2411.02172].
Externí odkaz:
http://arxiv.org/abs/2412.02584
Symmetry breaking is a widely popular approach to enhance solvers in constraint programming, such as those for SAT or MIP. Symmetry breaking predicates (SBPs) typically impose an order on variables and single out the lexicographic leader (lex-leader)
Externí odkaz:
http://arxiv.org/abs/2407.04419
Symmetry reduction is crucial for solving many interesting SAT instances in practice. Numerous approaches have been proposed, which try to strike a balance between symmetry reduction and computational overhead. Arguably the most readily applicable me
Externí odkaz:
http://arxiv.org/abs/2406.13557
Autor:
Brenner, Sofia, García-Lucas, Diego
Let $p$ be an odd prime number. We show that the modular isomorphism problem has a positive answer for finite $p$-groups whose center has index $p^3$, which is a strong contrast to the analogous situation for $p = 2$.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/2311.06666
Autor:
Brenner, Sofia
For $k, \ell \in \mathbb{N}$, we introduce the concepts of $k$-ultrahomogeneity and $\ell$-tuple regularity for finite groups. Inspired by analogous concepts in graph theory, these form a natural generalization of homogeneity, which was studied by Ch
Externí odkaz:
http://arxiv.org/abs/2307.08298
Autor:
Brenner, Sofia, Heinrich, Irene
We classify the countable ultrahomogeneous 2-vertex-colored graphs in which the color classes are imprimitive, i.e., up to complementation they form disjoint unions of cliques. This generalizes work by Jenkinson, Lockett and Truss as well as Rose on
Externí odkaz:
http://arxiv.org/abs/2306.09146
Autor:
Brenner, Sofia
This paper extends the study of group algebras of finite groups in which the socle of the center is an ideal. We provide a detailed analysis of the structure of these groups. In a particular case, we reach a complete characterization of the groups wi
Externí odkaz:
http://arxiv.org/abs/2301.08035
Autor:
Brenner, Sofia, Külshammer, Burkhard
Let $F$ be a field of characteristic $p > 0$. We study the structure of the finite groups $G$ for which the socle of the center of $FG$ is an ideal in $FG$ and classify the finite $p$-groups $G$ with this property. Moreover, we give an explicit descr
Externí odkaz:
http://arxiv.org/abs/2212.01601
Autor:
Brenner, Sofia, Külshammer, Burkhard
We study symmetric algebras $A$ over an algebraically closed field $F$ in which the Jacobson radical of the center of $A$, the socle of the center of $A$ or the Reynolds ideal of $A$ are ideals.
Externí odkaz:
http://arxiv.org/abs/2207.01281
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.