Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Brendle, Tara"'
Publikováno v:
Trans. Amer. Math. Soc. 376 (2023), 2557-2572
Let $M_n$ be the connect sum of $n$ copies of $S^2 \times S^1$. A classical theorem of Laudenbach says that the mapping class group $\text{Mod}(M_n)$ is an extension of $\text{Out}(F_n)$ by a group $(\mathbb{Z}/2)^n$ generated by sphere twists. We pr
Externí odkaz:
http://arxiv.org/abs/2012.01529
We give two proofs that appropriately defined congruence subgroups of the mapping class group of a surface with punctures/boundary have enormous amounts of rational cohomology in their virtual cohomological dimension. In particular we give bounds tha
Externí odkaz:
http://arxiv.org/abs/2003.10913
Autor:
Brendle, Tara, Margalit, Dan
We prove that if a normal subgroup of the extended mapping class group of a closed surface has an element of sufficiently small support then its automorphism group and abstract commensurator group are both isomorphic to the extended mapping class gro
Externí odkaz:
http://arxiv.org/abs/1710.08929
Autor:
Brendle, Tara E., Margalit, Dan
By evaluating the Burau representation at t=-1, we obtain a symplectic representation of the braid group. We define the congruence subgroups of the braid group to be the preimages of the principal congruence subgroups of the symplectic group. Our mai
Externí odkaz:
http://arxiv.org/abs/1410.7416
Publikováno v:
Invent. Math. 200 (2015), no. 1, 263-310
We prove that the hyperelliptic Torelli group is generated by Dehn twists about separating curves that are preserved by the hyperelliptic involution. This verifies a conjecture of Hain. The hyperelliptic Torelli group can be identified with the kerne
Externí odkaz:
http://arxiv.org/abs/1211.4018
Autor:
Brendle, Tara E., Margalit, Dan
Publikováno v:
Math. Proc. Camb. Phil. Soc. 159 (2015) 207-217
The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface and that also commute with some fixed hyperelliptic involution. The authors and Putman proved that thi
Externí odkaz:
http://arxiv.org/abs/1202.2365
Autor:
Brendle, Tara E., Margalit, Dan
The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface and that also commute with some fixed hyperelliptic involution. We prove a Birman exact sequence for h
Externí odkaz:
http://arxiv.org/abs/1110.1397
Let SI(S_g) denote the hyperelliptic Torelli group of a closed surface S_g of genus g. This is the subgroup of the mapping class group of S_g consisting of elements that act trivially on H_1(S_g;Z) and that commute with some fixed hyperelliptic invol
Externí odkaz:
http://arxiv.org/abs/1110.0448
Publikováno v:
Israel Journal of Mathematics; Apr2024, Vol. 260 Issue 1, p303-340, 38p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.