Zobrazeno 1 - 10
of 133
pro vyhledávání: '"Bramanti, Marco"'
Autor:
Biagi, Stefano, Bramanti, Marco
We consider Kolmogorov-Fokker-Planck operators of the form $$ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}(x,t)u_{x_{i}x_{j}}+\sum_{k,j=1}^{N} b_{jk}x_{k}u_{x_{j}}-\partial_{t}u, $$ with $\left( x,t\right) \in\mathbb{R}^{N+1},N\geq q\geq1$. We assume that $a_
Externí odkaz:
http://arxiv.org/abs/2405.09358
Autor:
Biagi, Stefano, Bramanti, Marco
We consider a class of nonvariational degenerate elliptic operators of the kind \[ Lu=\sum_{i,j=1}^{m}a_{ij}\left( x\right) X_{i}X_{j}u \] where $\left\{ a_{ij}\left( x\right) \right\} _{i,j=1}^{m}$ is a symmetric uniformly positive matrix of bounded
Externí odkaz:
http://arxiv.org/abs/2312.15367
Autor:
Biagi Stefano, Bramanti Marco
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 12, Iss 1, Pp 734-771 (2024)
We consider degenerate Kolmogorov-Fokker-Planck operators ℒu=∑i,j=1qaij(x,t)uxixj+∑k,j=1Nbjkxkuxj−ut,{\mathcal{ {\mathcal L} }}u=\mathop{\sum }\limits_{i,j=1}^{q}{a}_{ij}\left(x,t){u}_{{x}_{i}{x}_{j}}+\mathop{\sum }\limits_{k,j=1}^{N}{b}_{jk}
Externí odkaz:
https://doaj.org/article/df20c746c11f43dab6e0f930998d5f20
We consider degenerate KFP operators \[ Lu=\sum_{i,j=1}^{m_{0}}a_{ij}(x,t)\partial_{x_{i}x_{j}}^{2}u+\sum_{k,j=1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u\equiv\sum_{i,j=1}^{m_{0}}a_{ij}(x,t)\partial_{x_{i}x_{j}}^{2}u+Yu \] ($(x,t)\in\mathbb{R}^
Externí odkaz:
http://arxiv.org/abs/2305.11641
Autor:
Biagi, Stefano, Bramanti, Marco
We consider degenerate Kolmogorov-Fokker-Planck operators $$ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}(x,t)\partial_{x_{i}x_{j}}^{2}u+\sum_{k,j=1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u,\qquad (x,t)\in\mathbb{R}^{N+1},N\geq q\geq1 $$ such that the c
Externí odkaz:
http://arxiv.org/abs/2205.10270
Autor:
Biagi, Stefano, Bramanti, Marco
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 May 2024 533(1)
Autor:
Biagi, Stefano, Bramanti, Marco
Let $X_{1},...,X_{m}$ be a family of real smooth vector fields defined in $\mathbb{R}^{n}$, $1$-homogeneous with respect to a nonisotropic family of dilations and satisfying H\"{o}rmander's rank condition at $0$ (and therefore at every point of $\mat
Externí odkaz:
http://arxiv.org/abs/2011.09322
Autor:
Biagi, Stefano, Bramanti, Marco
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}$, where $X=\{X_{1},\ldots,X_{m}\}$ is a system of smooth H\"{o}rmander's vector fields in $\mathbb{R}^{n}$, and every $X_{j}$ is homogeneous of degree
Externí odkaz:
http://arxiv.org/abs/2003.09845