Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Bračič, Janko"'
Autor:
Bračič, Janko
In this survey paper we present known results about reflexive subspace lattices. We show that every nest and every atomic Boolean subspace lattice in a complex Banach space is reflexive, even strongly reflexive. Our main tool is Ringrose's Lemma abou
Externí odkaz:
http://arxiv.org/abs/2402.08279
Autor:
Bračič, Janko, Kuzma, Bojan
We answer a question about the diameter of an order-super-commuting graph on a symmetric group by studying the number-theoretical concept of $d$-complete sequences of primes in arithmetic progression.
Externí odkaz:
http://arxiv.org/abs/2401.14335
Autor:
Bračič, Janko, Kandić, Marko
We prove the existence of a non-trivial hyperinvariant subspace for several sets of polynomially compact operators. The main results of the paper are: (i) a non-trivial norm closed algebra $\mathcal A\subseteq \mathcal B(\mathscr X)$ which consists o
Externí odkaz:
http://arxiv.org/abs/2205.14732
Autor:
Bračič, Janko, Kandić, Marko
Given a linear transformation $A$ on a finite-dimensional complex vector space $\eV$, in this paper we study the group $\Col(A)$ consisting of those invertible linear transformations $S$ on $\eV$ for which the mapping $\Phi_S$ defined as $\Phi_S\colo
Externí odkaz:
http://arxiv.org/abs/2201.04041
Autor:
Bračič, Janko
For an operator $A$ on a complex Banach space $X$ and a closed subspace $M\subseteq X$, the local commutant of $A$ at $M$ is the set $C(A;M)$ of all operators $T$ on $X$ such that $TAx=ATx$ for every $x\in M$. It is clear that $ C(A;M)$ is a closed l
Externí odkaz:
http://arxiv.org/abs/2102.01028
Autor:
Bračič, Janko, Kandić, Marko
Publikováno v:
In Linear Algebra and Its Applications 15 November 2022 653:207-230
Autor:
Bračič, Janko
Publikováno v:
Aequationes Mathematicae; Oct2024, Vol. 98 Issue 5, p1305-1315, 11p
Autor:
Bračič, Janko
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2022 506(2)
Autor:
Bračič, Janko, Oliveira, Lina
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(H_1,H_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov--Shulman. (ii) There exists an order-preserving map $\Psi=(\p
Externí odkaz:
http://arxiv.org/abs/1511.08014