Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Boza Prieto, Luis"'
Autor:
Adhikari, S. D., Boza Prieto, Luis, Eliahou, Shalom, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
Given any length k ≥ 3 and density 0 < δ ≤ 1, we introduce and study the set Sz(k, δ) consisting of all positive integers n such that every subset of {1, 2, . . . , n} of density at least δ contains an arithmetic progression of length k. A fam
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::143708b951f7589693f73dfbc93320d9
Autor:
Boza Prieto, Luis, Marín Sánchez, Juan Manuel, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
Let k ≥ 3 be an integer, the Schur number Sk(3) is the least positive integer, such that for every 3-coloring of the integer interval [1, Sk(3)] there exists a monochromatic solution to the equation x1+ · · · + xk= xk+1, where xi , i = 1, . . .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::6fb6bff77a5fd2218f5212aa9e5136c5
Autor:
Boza Prieto, Luis, Marín Sánchez, Juan Manuel, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
For integers k, n, c with k, n ≥ 1, and c ≥ 0, the n-color weak Rado number WRk (n, c) is defined as the least integer N, if it exists, such that for every n-coloring of the integer interval [1, N], there exists a monochromatic solution x1 ,...,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::dca41a2f99fecfcbf69e94b0d16eb59e
For integers k, n with k, n ≥ 1, the n-color weak Schur number W Sk(n) is defined as the least integer N, such that for every n-coloring of the integer interval [1, N], there exists a monochromatic solution x1, . . . , xk, xk+1 in that interval to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::96a211212688ba8dacd0679f59c9e440
Autor:
Adhikari, S. D., Boza Prieto, Luis, Eliahou, Shalom, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
We show that, for every positive integer r, there exists an integer b = b(r) such that the 4-variable quadratic Diophantine equation (x1 − y1)(x2 − y2) = b is r-regular. Our proof uses Szemerédi’s theorem on arithmetic progressions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::01c735e7d3e3db4e055581d9250e307a
Autor:
Adhikari, S. D., Boza Prieto, Luis, Eliahou, Shalom, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
Given k ≥ 1, the Fox–Kleitman conjecture from 2006 states that there exists a nonzero integer b such that the 2k-variable linear Diophantine equation ∑k i=1 (xi − yi) = b is (2k − 1)-regular. This is best possible, since Fox and Kleitman sh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::a934a4e8eebfc7832a41d1b70789ebcd
Autor:
Adhikari, S. D., Boza Prieto, Luis, Eliahou, Shalom, Marín Sánchez, Juan Manuel, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
For integers k, n, c with k, n ≥ 1, the n-color Rado number Rk(n, c) is defined to be the least integer N if any, or infinity otherwise, such that for every n-coloring of the set {1, 2, . . . , N}, there exists a monochromatic solution in that set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::e69575427724e642e21681c0a16cc826
Autor:
Revuelta Marchena, María Pastora, Boza Prieto, Luis, Marín Sánchez, Juan Manuel, Sanz Domínguez, María Isabel
For integers k, n, c with k, n ≥ 1 and c ≥ 0, the n color weak Rado number W Rk(n, c) is defined as the least integer N, if it exists, such that for every n coloring of the set {1, 2, ..., N}, there exists a monochromatic solution in that set to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::12d690fb1327d743b2dae36caf5031f8
Autor:
Adhikari, S. D., Boza Prieto, Luis, Eliahou, Shalom, Marín Sánchez, Juan Manuel, Revuelta Marchena, María Pastora, Sanz Domínguez, María Isabel
For integers k, n, c with k, n ≥ 1, the n-color Rado number Rk(n, c) is defined to be the least integer N, if it exists or ∞ otherwise, such that for every n-coloring of the set {1, 2,...,N}, there exists a monochromatic solution in that set to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3272::12ace90efe9d253b8e9d35cf34700c4e
Autor:
Boza Prieto, Luis, Fedriani Martel, Eugenio Manuel, Núñez Valdés, Juan, Pacheco Martínez, Ana María, Villar Liñán, María Trinidad
Publikováno v:
Brújula
Universidad Loyola Andalucía
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Universidad Loyola Andalucía
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d67d77b869cade83e9e4cef64f6df769
http://hdl.handle.net/20.500.12412/1121
http://hdl.handle.net/20.500.12412/1121