Zobrazeno 1 - 10
of 244
pro vyhledávání: '"Boyle, Mike"'
Autor:
Boyle, Mike
Shifts of finite type defined from shift equivalent matrices must be flow equivalent.
Comment: 13 pages
Comment: 13 pages
Externí odkaz:
http://arxiv.org/abs/2411.14629
Autor:
Knight, Alexander, Foucart, Francois, Duez, Matthew D., Boyle, Mike, Kidder, Lawrence E., Pfeiffer, Harald P., Scheel, Mark A.
In numerical simulations of binary neutron star systems, the equation of state of the dense neutron star matter is an important factor in determining both the physical realism and the numerical accuracy of the simulations. Some equations of state use
Externí odkaz:
http://arxiv.org/abs/2307.03250
Autor:
Boyle, Mike, Schmieding, Scott
We give an introduction to the "stable algebra of matrices" as related to certain problems in symbolic dynamics. We consider this stable algebra (especially, shift equivalence and strong shift equivalence) for matrices over general rings as well as v
Externí odkaz:
http://arxiv.org/abs/2006.01051
Autor:
Boyle, Mike, Steinberg, Benjamin
We note that the deep results of Grunewald and Segal on algorithmic problems for arithmetic groups imply the decidability of several matrix equivalence problems involving poset-blocked matrices over Z. Consequently, results of Eilers, Restorff, Ruiz
Externí odkaz:
http://arxiv.org/abs/1812.04555
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boyle, Mike
Publikováno v:
Journal of Modern Dynamics, Volume 15, 2019, 427-435
This paper is based on my April 2018 talk at the Maryland-Penn State dynamics conference, on the occasion of Mike Hochman receiving the Brin Prize.
Comment: References updated, especially to include work of David Burguet (see footnote 7)
Comment: References updated, especially to include work of David Burguet (see footnote 7)
Externí odkaz:
http://arxiv.org/abs/1810.10622
Autor:
Boyle, Mike, Chuysurichay, Sompong
We study the mapping class group of a nontrivial irreducible shift of finite type: the group of flow equivalences of its mapping torus modulo isotopy. This group plays for flow equivalence the role that the automorphism group plays for conjugacy. It
Externí odkaz:
http://arxiv.org/abs/1704.03916
Publikováno v:
Trans. Amer. Math. Soc. 373 (2020), 2591-2657
In this paper, a G-shift of finite type (G-SFT) is a shift of finite type together with a free continuous shift-commuting action by a finite group G. We reduce the classification of G-SFTs up to equivariant flow equivalence to an algebraic classifica
Externí odkaz:
http://arxiv.org/abs/1512.05238