Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Boyland, Philip"'
We study the dynamics of measurable pseudo-Anosov homeomorphisms of surfaces, a generalization of Thurston's pseudo-Anosov homeomorphisms. A measurable pseudo-Anosov map has a transverse pair of full measure turbulations consisting of streamlines whi
Externí odkaz:
http://arxiv.org/abs/2306.16841
We exhibit a continuously varying family $F_\lambda$ of homeomorphisms of the sphere $S^2$, for which each $F_\lambda$ is a measurable pseudo-Anosov map. Measurable pseudo-Anosov maps are generalizations of Thurston's pseudo-Anosov maps, and also of
Externí odkaz:
http://arxiv.org/abs/2306.16059
Autor:
Boyland, Philip
Inspired by a twist maps theorem of Mather we study recurrent invariant sets that are ordered like rigid rotation under the action of the lift of a bimodal circle map $g$ to the $k$-fold cover. For each irrational in the interior of the rotation set
Externí odkaz:
http://arxiv.org/abs/2203.15960
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\{f_t\}_{t\in(1,2]}$ be the family of core tent maps of slopes $t$. The parameterized Barge-Martin construction yields a family of disk homeomorphisms $\Phi_t\colon D^2\to D^2$, having transitive global attractors $\Lambda_t$ on which $\Phi_t$ i
Externí odkaz:
http://arxiv.org/abs/1812.00453
In the inverse limit ${\hat{I}}_s$ of a tent map $f_s$ restricted to its core, the set $\mathcal{GR}$ of points whose path components are bi-infinite and bi-dense has full measure with respect to the measure induced on $\hat{I}_s$ by the unique absol
Externí odkaz:
http://arxiv.org/abs/1712.00739
Publikováno v:
Geom. Topol. 25 (2021) 111-228
Let $\{f_t\colon I\to I\}$ be a family of unimodal maps with topological entropies $h(f_t)>\frac12\log 2$, and ${\widehat{f}}_t\colon{\widehat{I}}_t\to{\widehat{I}}_t$ be their natural extensions, where ${\widehat{I}}_t=\varprojlim(I,f_t)$. Subject t
Externí odkaz:
http://arxiv.org/abs/1704.06624
Previously published admissibility conditions for an element of $\{0,1\}^{\mathbb{Z}}$ to be the itinerary of a point of the inverse limit of a tent map are expressed in terms of forward orbits. We give necessary and sufficient conditions in terms of
Externí odkaz:
http://arxiv.org/abs/1701.07414
Autor:
Boyland, Philip, Severa, William
We construct geometric realizations for the infimax family of substitutions by generalizing the Rauzy-Canterini-Siegel method for a single substitution to the S-adic case. The composition of each countably infinite subcollection of substitutions from
Externí odkaz:
http://arxiv.org/abs/1603.09726
We construct a family $\{\Phi_t\}_{t\in[0,1]}$ of homeomorphisms of the two-torus isotopic to the identity, for which all of the rotation sets $\rho(\Phi_t)$ can be described explicitly. We analyze the bifurcations and typical behavior of rotation se
Externí odkaz:
http://arxiv.org/abs/1410.7727