Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Boyan Sirakov"'
Autor:
Damião J. Araújo, Boyan Sirakov
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 169:138-154
Autor:
Boyan Sirakov
Publikováno v:
Analysis & PDE. 15:197-216
Autor:
Boyan Sirakov, Nikola Kamburov
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
Publikováno v:
International Mathematics Research Notices. 2022:9024-9043
We prove that the Dirichlet problem for the Lane–Emden equation in a half-space has no positive solution that is monotone in the normal direction. As a consequence, this problem does not admit any positive classical solution that is bounded on fini
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We consider fully nonlinear uniformly elliptic cooperative systems with quadratic growth in the gradient, such as $$ -F_i(x, u_i, Du_i, D^2 u_i)- \langle M_i(x)D u_i, D u_i \rangle =\lambda c_{i1}(x) u_1 + \cdots + \lambda c_{in}(x) u_n +h_i(x), $$ f
A priori bounds and multiplicity for fully nonlinear equations with quadratic growth in the gradient
Autor:
Boyan Sirakov, Gabrielle Nornberg
Publikováno v:
Journal of Functional Analysis. 276:1806-1852
We consider fully nonlinear uniformly elliptic equations with quadratic growth in the gradient, such as $$ -F(x,u,Du,D^2u) =\lambda c(x)u+\langle M(x)D u, D u \rangle +h(x) $$ in a bounded domain with a Dirichlet boundary condition, here $\lambda \in
Autor:
Boyan Sirakov, Philippe Souplet
We develop a new, unified approach to the following two classical questions on elliptic PDE: the strong maximum principle for equations with non-Lipschitz nonlinearities, and the at most exponential decay of solutions in the whole space or exterior d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2419cb9e003316cc4d9a6fd912e8262f
http://arxiv.org/abs/2010.08511
http://arxiv.org/abs/2010.08511
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 35:1757-1772
The well-known Ambrosetti–Prodi theorem considers perturbations of the Dirichlet Laplacian by a nonlinear function whose derivative jumps over the principal eigenvalue of the operator. Various extensions of this landmark result were obtained for se
Autor:
Boyan Sirakov
Publikováno v:
International Mathematics Research Notices. 2018:7457-7482
Publikováno v:
Proceedings of the International Congress of Mathematicians (ICM 2018).