Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Bovinille Anye Cho"'
Autor:
Lucas Gerken-Starepravo, Xianfeng Zhu, Bovinille Anye Cho, Fernando Vega-Ramon, Oliver Pennington, Ehecatl Antonio del Río-Chanona, Keju Jing, Dongda Zhang
Publikováno v:
Digital Chemical Engineering, Vol 2, Iss , Pp 100011- (2022)
Dynamic flux analysis methods have been widely used for deciphering complex metabolic fluxes transients. However, many of them require frequent experimental measurements and are ineffective in dealing with under-determined metabolic reaction networks
Externí odkaz:
https://doaj.org/article/d1d75d62aa5945a39a9cae5094b794eb
Autor:
Robert W.M. Pott, Brandon Sean Ross, Bovinille Anye Cho, Dongda Zhang, Jan-Pierre du Toit, Ehecatl Antonio del Rio Chanona
Publikováno v:
International Journal of Hydrogen Energy. 46:36696-36708
Developing kinetic models to simulate Rhodopseudomonas palustris biohydrogen production within different configurations of photobioreactors (PBRs) poses a significant challenge. In this study, two types of PBRs: schott bottle-based and vertical tubul
Autor:
Bovinille Anye Cho, Elze Grobler, Robert William McClelland Pott, Ehecatl Antonio del Río Chanona, Dongda Zhang
Publikováno v:
Chemical Engineering Science. 270:118525
Publikováno v:
Computer Aided Chemical Engineering ISBN: 9780323958790
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::67f241dc29d7d9cc0e3a8ea5d1db5af8
https://doi.org/10.1016/b978-0-323-95879-0.50019-9
https://doi.org/10.1016/b978-0-323-95879-0.50019-9
Autor:
Bovinille Anye Cho, José Ángel Moreno-Cabezuelo, Lauren A. Mills, Ehecatl Antonio del Río Chanona, David J. Lea-Smith, Dongda Zhang
Publikováno v:
Algal Research. 70:102997
Autor:
Ziqi Song, Max Mowbray, Chufan Wu, Ehecatl Antonio del Rio-Chanona, Thomas R. Savage, Bovinille Anye Cho, Dongda Zhang
Publikováno v:
Mowbray, M, Savage, T R, Wu, C, Song, Z, Anye Cho, B, del Rio-Chanona, E A & Zhang, D 2021, ' Machine learning for biochemical engineering: A review ', Biochemical Engineering Journal . https://doi.org/10.1016/j.bej.2021.108054
Biochemical Engineering Journal
Biochemical Engineering Journal
The field of machine learning is comprised of techniques, which have proven powerful approaches to knowledge discovery and construction of ‘digital twins’ in the highly dimensional, nonlinear and stochastic domains common to biochemical engineeri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09c02dc10d87ab1424336d8dd411eea6
https://doi.org/10.1016/j.bej.2021.108054
https://doi.org/10.1016/j.bej.2021.108054
Autor:
Robert W.M. Pott, Bovinille Anye Cho
Publikováno v:
Chemical Engineering Journal. 363:141-154
The energy input into closed photobioreactors (PBRs) for aeration and/or agitation by pneumatic and mechanical devices impacts their material, operational and production costs, accounting for up to circa 80% of the total costs. This work describes th
Autor:
Robin Smith, Miguel Ángel de Carvalho Servia, Dongda Zhang, Bovinille Anye Cho, Ehecatl Antonio del Rio Chanona
Publikováno v:
Cho, B A, Servia, M Á D C, Chanona, E A D R, Smith, R & Zhang, D 2021, ' Synergising biomass growth kinetics and transport mechanisms to simulate light/dark cycle effects on photo-production systems ', Biotechnology and Bioengineering . https://doi.org/10.1002/bit.27707
Light attenuation is a primary challenge limiting the upscaling of photobioreactors for sustainable bio-production. One key to this challenge, is to model and optimise the light/dark cycles so that cells within the dark region can be frequently trans
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0232ff628360a00a5bbdd6cd6a740dd5
https://www.research.manchester.ac.uk/portal/en/publications/synergising-biomass-growth-kinetics-and-transport-mechanisms-to-simulate-lightdark-cycle-effects-on-photoproduction-systems(25ba424d-36b5-49c5-8714-475682fdfe6d).html
https://www.research.manchester.ac.uk/portal/en/publications/synergising-biomass-growth-kinetics-and-transport-mechanisms-to-simulate-lightdark-cycle-effects-on-photoproduction-systems(25ba424d-36b5-49c5-8714-475682fdfe6d).html
Publikováno v:
Zhang, D, Savage, T R & Cho, B A 2020, ' Combining model structure identification and hybrid modelling for photo-production process predictive simulation and optimisation ', Biotechnology and Bioengineering, vol. 117, no. 11, pp. 3356-3367 . https://doi.org/10.1002/bit.27512
Zhang, D, Savage, T R & Cho, B A 2020, ' Combining model structure identification and hybrid modelling for photo-production process predictive simulation and optimisation ', Biotechnology and Bioengineering . https://doi.org/10.1002/bit.27512
Zhang, D, Savage, T R & Cho, B A 2020, ' Combining model structure identification and hybrid modelling for photo-production process predictive simulation and optimisation ', Biotechnology and Bioengineering . https://doi.org/10.1002/bit.27512
Integrating physical knowledge and machine learning is a critical aspect of developing industrially focused digital twins for monitoring, optimisation, and design of microalgal and cyanobacterial photo-production processes. However, identifying the c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd2f3e567d38f7cbfc7ff1c78268354c
https://doi.org/10.1002/bit.27512
https://doi.org/10.1002/bit.27512