Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Boutonnet, Rémi"'
We prove that if $A$ is a non-separable abelian tracial von Neuman algebra then its free powers $A^{*n}, 2\leq n \leq \infty$, are mutually non-isomorphic and with trivial fundamental group, $\mathcal F(A^{*n})=1$, whenever $2\leq n<\infty$. This set
Externí odkaz:
http://arxiv.org/abs/2308.05671
Autor:
Boutonnet, Remi, Popa, Sorin
We prove that if $\{(M_j, \tau_j)\}_{j\in J}$ are tracial von Neumann algebras, $s_j \in M_j$ are selfadjoint semicircular elements and $t=(t_j)_j$ is a square summable $J$-tuple of real numbers with at least two non-zero entries, then the von Neuman
Externí odkaz:
http://arxiv.org/abs/2302.13355
Autor:
Boutonnet, Rémi, Houdayer, Cyril
Publikováno v:
J. \'Ec. polytech. Math. 10 (2023), 513-524
We prove a noncommutative Bader-Shalom factor theorem for lattices with dense projections in product groups. As an application of this result and our previous works, we obtain a noncommutative Margulis factor theorem for all irreducible lattices $\Ga
Externí odkaz:
http://arxiv.org/abs/2207.13548
Publikováno v:
Ann. H. Lebesgue 6 (2023), 297-330
We complete the study of characters on higher rank semisimple lattices initiated in [BH19,BBHP20], the missing case being the case of lattices in higher rank simple algebraic groups in arbitrary characteristics. More precisely, we investigate dynamic
Externí odkaz:
http://arxiv.org/abs/2112.01337
Autor:
Boutonnet, Rémi
We construct uncountably many infinite characters of type II for $SL_n(\mathbb{Z})$, $n \geq 2$.
Comment: v2: 9 pages, major revision. The proof of Theorem 1.3 contained a mistake. We give a different construction, slightly more elaborate, but u
Comment: v2: 9 pages, major revision. The proof of Theorem 1.3 contained a mistake. We give a different construction, slightly more elaborate, but u
Externí odkaz:
http://arxiv.org/abs/2111.11754
Publikováno v:
Invent. Math. 229 (2022), 929-985
We discuss special properties of the spaces of characters and positive definite functions, as well as their associated dynamics, for arithmetic groups of product type. Axiomatizing these properties, we define the notions of charmenability and charfin
Externí odkaz:
http://arxiv.org/abs/2009.09952
Autor:
Boutonnet, Rémi, Houdayer, Cyril
Publikováno v:
Publ. Math. Inst. Hautes \'Etudes Sci 133 (2021), 1-46
We show that stationary characters on irreducible lattices $\Gamma < G$ of higher-rank connected semisimple Lie groups are conjugation invariant, that is, they are genuine characters. This result has several applications in representation theory, ope
Externí odkaz:
http://arxiv.org/abs/1908.07812
We introduce a wide class of countable groups, called properly proximal, which contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all lattices in non-compact semi-simple Lie groups, but excludes all inner amenable g
Externí odkaz:
http://arxiv.org/abs/1809.01881
Autor:
Boutonnet, Rémi, Ioana, Adrian
We provide new examples of translation actions on locally compact groups with the "local spectral gap property" introduced in \cite{BISG15}. This property has applications to strong ergodicity, the Banach-Ruziewicz problem, orbit equivalence rigidity
Externí odkaz:
http://arxiv.org/abs/1702.06323
Autor:
Boutonnet, Rémi
Dans cette thèse je m'intéresse à des propriétés de rigidité de certaines constructions d'algèbres de von Neumann. Ces constructions relient la théorie des groupes et la théorie ergodique au monde des algèbres d'opérateurs. Il est donc nat
Externí odkaz:
http://www.theses.fr/2014ENSL0901/document