Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Bourqui, David"'
We solve the equivariant generalized Nash problem for any non-rational normal variety with torus action of complexity one. Namely, we give an explicit combinatorial description of the Nash order on the set of equivariant divisorial valuations on any
Externí odkaz:
http://arxiv.org/abs/2203.13109
We show that there exists a strong connection between the generic formal neighborhood at a rational arc lying in the Nash set associated with a toric divisorial valuation on a toric variety and the formal neighborhood at the generic point of the same
Externí odkaz:
http://arxiv.org/abs/2202.11681
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bourqui, David
Publikováno v:
In Journal of Algebra 1 November 2023 633:317-361
Autor:
Bourqui, David1 david.bourqui@univ-rennes1.fr, Morán Cañón, Mario2 mariomc@ou.edu
Publikováno v:
Forum of Mathematics, Sigma. 2023, Vol. 11, p1-38. 38p.
Autor:
Bourqui, David
Let X be a surface whose Cox ring has a single relation satisfying moreover a kind of linearity property. Under a simple assumption, we show that the geometric Manin's conjectures hold for some degrees lying in the dual of the effective cone of X (in
Externí odkaz:
http://arxiv.org/abs/1205.3573
Autor:
Bourqui, David
We investigate the asympotic behaviour of the moduli space of morphisms from the rational curve to a given variety when the degree becomes large. One of the crucial tools is the homogeneous coordinate ring of the variey. First we explain in details w
Externí odkaz:
http://arxiv.org/abs/1107.3824
Autor:
Bourqui, David
We prove a version of Manin's conjecture for a certain family of intrinsic quadrics, the base field being a global field of positive characteristic. We also explain how a very slight variation of the method we use allows to establish the conjecture f
Externí odkaz:
http://arxiv.org/abs/1001.3929
Autor:
Bourqui, David
In the first part of this text, we define motivic Artin L-fonctions via a motivic Euler product, and show that they coincide with the analogous functions introduced by Dhillon and Minac. In the second part, we define under some assumptions a motivic
Externí odkaz:
http://arxiv.org/abs/0808.4058