Zobrazeno 1 - 10
of 121
pro vyhledávání: '"Bourgault, Yves"'
Moving-habitat models track the density of a population whose suitable habitat shifts as a consequence of climate change. Whereas most previous studies in this area consider 1-dimensional space, we derive and study a spatially 2-dimensional moving-ha
Externí odkaz:
http://arxiv.org/abs/2312.07842
Publikováno v:
In Advances in Water Resources November 2024 193
We consider a class of finite element approximations for fourth-order parabolic equations that can be written as a system of second-order equations by introducing an auxiliary variable. In our approach, we first solve a variational problem and then a
Externí odkaz:
http://arxiv.org/abs/2010.11913
We focus here on a class of fourth-order parabolic equations that can be written as a system of second-order equations by introducing an auxiliary variable. We design a novel second-order fully discrete mixed finite element method to approximate thes
Externí odkaz:
http://arxiv.org/abs/2008.11879
In this paper we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBV
Externí odkaz:
http://arxiv.org/abs/2006.02962
This paper provides a new approach to derive various arbitrary high order finite difference formulae for the numerical differentiation of analytic functions. In this approach, various first and second order formulae for the numerical approximation of
Externí odkaz:
http://arxiv.org/abs/2005.11754
This paper presents a sequence of deferred correction (DC) schemes built recursively from the implicit midpoint scheme for the numerical solution of general first order ordinary differential equations (ODEs). It is proven that each scheme is A-stable
Externí odkaz:
http://arxiv.org/abs/1903.02115
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Keita, Sana, Bourgault, Yves
The behaviour of the solutions to the Riemann problem for the isentropic Euler equations when the pressure vanishes is analysed. It is shown that any solution composed of a 1-shock wave and a 2-rarefaction wave tends to a two-shock wave when the pres
Externí odkaz:
http://arxiv.org/abs/1805.04641
Autor:
Keita, Sana, Bourgault, Yves
We study an Eulerian droplet model which can be seen as the pressureless gas system with a source term, a subsystem of this model and the inviscid Burgers equation with source term. The condition for loss of regularity of a solution to Burgers equati
Externí odkaz:
http://arxiv.org/abs/1710.06904