Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Boumediene Abdellaoui"'
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 2, Pp 1-36 (2023)
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem $ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\la
Externí odkaz:
https://doaj.org/article/8fff118ccdc2446e8465e84ab6acb085
Publikováno v:
Mathematics in Engineering, Vol 3, Iss 2, Pp 1-28 (2021)
In this paper, we study the existence of distributional solutions of the following non-local elliptic problem \begin{eqnarray*} \left\lbrace \begin{array}{lll} (-\Delta)^{s}u + |\nabla u|^{p} &= & f \quad\text{ in } \Omega\\ \qquad \qquad \,
Externí odkaz:
https://doaj.org/article/cc9183466cca4bdfae199c68da3c0403
Publikováno v:
Mathematics in Engineering, Vol 2, Iss 4, Pp 639-656 (2020)
In this work, we are interested on the study of the Fujita exponent and the meaning of the blow-up for the fractional Cauchy problem with the Hardy potential, namely,\begin{equation*}u_t+(-\Delta)^s u=\lambda\dfrac{u}{|x|^{2s}}+u^{p}\;{\rm in}\;{{\bo
Externí odkaz:
https://doaj.org/article/ec3355679a744f7ca5ae59bc9e2fe109
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 177,, Pp 1-13 (2014)
In this article we analyze the dynamics of the problem $$\displaylines{ x'(t)=-(\delta+\beta(x(t)))x(t)+\theta\int_{0}^{\tau}f(a)x(t-a)\beta(x(t-a))da, \quad t> \tau, \cr x(t)=\phi(t),\quad 0 \leq t\leq \tau, }$$ where $\delta,\theta$ are posit
Externí odkaz:
https://doaj.org/article/325081418ed14d05ab216433c05e7931
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 202:1451-1468
The main goal of this paper is to prove existence and non-existence results for deterministic Kardar-Parisi-Zhang type equations involving non-local "gradient terms". More precisely, let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded domain
Publikováno v:
Mathematics in Engineering. 5:1-36
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem \begin{document}$ \left\{ \begin{array}{rcll} (-\Delta )
Publikováno v:
Complex Variables and Elliptic Equations. 68:461-497
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 13
Publikováno v:
Mediterranean Journal of Mathematics
Mediterranean Journal of Mathematics, Springer Verlag, 2020, 17 (4), pp.119. ⟨10.1007/s00009-020-01542-2⟩
Mediterranean Journal of Mathematics, Springer Verlag, 2020, 17 (4), pp.119. ⟨10.1007/s00009-020-01542-2⟩
International audience; In this paper, we investigate the existence of solutions to a nonlinear parabolic system, which couples a non-homogeneous reaction-diffusion-type equation and a non-homogeneous viscous Hamilton-Jacobi one. The initial data and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::187e1777e97a42b5bdf12c3dbbea65a9
https://hal.univ-lorraine.fr/hal-03277486/file/Parabolic-System-AABE_03-12-19_MJM.pdf
https://hal.univ-lorraine.fr/hal-03277486/file/Parabolic-System-AABE_03-12-19_MJM.pdf
Publikováno v:
Mathematics in Engineering, Vol 3, Iss 2, Pp 1-28 (2021)
In this paper, we study the existence of distributional solutions of the following non-local elliptic problem \begin{eqnarray*} \left\lbrace \begin{array}{lll} (-\Delta)^{s}u + |\nabla u|^{p} &= & f \quad\text{ in } \Omega\\ \qquad \qquad \,\,\,\,\,\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a241fa171da15505ff4aef46d719db58
http://arxiv.org/abs/2003.13069
http://arxiv.org/abs/2003.13069