Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Boukrouche, Mahdi"'
We consider an incompressible non-isothermal fluid flow with non-linear slip boundary conditions governed by Tresca's friction law. We assume that the stress tensor is given as $\sigma = 2 \mu\bigl( \theta, u, | D(u) |) |D(u) |^{p-2} D(u) - \pi {\rm
Externí odkaz:
http://arxiv.org/abs/2112.07266
Following the previous part of our study on unsteady non-New\-to\-nian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a $p$-Laplacian non
Externí odkaz:
http://arxiv.org/abs/2112.07834
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boukrouche, Mahdi, Tarzia, Domingo A.
Motivated by the modeling of temperature regulation in some mediums, we consider the non-classical heat conduction equation in the domain $D=\mathbb{R}^{n-1}\times\br^{+}$ for which the internal energy supply depends on an average in the time variabl
Externí odkaz:
http://arxiv.org/abs/1905.13556
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boukrouche, Mahdi, Tarzia, Domingo A.
We establish in this paper the equivalence between a Volterra integral equation of second kind and a singular ordinary differential equation of third order with two initial conditions and an integral boundary condition, with a real parameter. This eq
Externí odkaz:
http://arxiv.org/abs/1704.00746
Autor:
Boukrouche, Mahdi, Tarzia, Domingo A.
We consider the non-classical heat conduction equation, in the domain $D=\br^{n-1}\times\br^{+}$, for which the internal energy supply depends on an integral function in the time variable of % $(y , t)\mapsto \int_{0}^{t} u_{x}(0 , y , s) ds$, %where
Externí odkaz:
http://arxiv.org/abs/1610.01680
Autor:
Boukrouche, Mahdi, Paoli, Laetitia
In this paper we study non stationary viscous incompressible fluid flows with nonlinear boundary slip conditions given by a subdifferential property of friction type. More precisely we assume that the tangential velocity vanishes as long as the shear
Externí odkaz:
http://arxiv.org/abs/1607.01592
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 March 2021 495(1)
Motivated by extrusion problems, we consider a non-stationary incompress-ible 3D fluid flow with a non-constant (temperature dependent) viscosity, subjected to mixed boundary conditions with a given time dependent velocity on a part of the boundary a
Externí odkaz:
http://arxiv.org/abs/1512.06607