Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Bouillot, Olivier"'
We define a two-parameter deformation of the quasi-shuffle by means of the formal group law associated with the exponential generating function of the homogeneous Eulerian polynomials, and construct bases of $QSym$ and $\WQSym$ whose product rule is
Externí odkaz:
http://arxiv.org/abs/2209.13317
Autor:
Bouillot, Olivier
Ce travail comprends deux parties indépendantes, mais intimement liées. La première partie concerne le calcul et l'évaluation numérique des invariants holomorphes des difféomorphismes tangents à l'identité, dans le cas-type. On y expose notam
Externí odkaz:
http://www.theses.fr/2011PA112224/document
Autor:
Bouillot, Olivier
Multizeta values are numbers appearing in many different contexts. Unfortunately, their arithmetics remains mostly out of reach. In this article, we define a functional analogue of the algebra of multizetas values, namely the algebra of multitangent
Externí odkaz:
http://arxiv.org/abs/1404.0992
Autor:
Bouillot, Olivier, Ecalle, Jean
In this short Survey we revisit the subject of local, identity-tangent diffeomorphisms of $\doC$ and their analytic invariants, under two viewpoints: that of explicit expansions, which necessarily involve multitangents and multizetas; and that of eff
Externí odkaz:
http://arxiv.org/abs/1404.1042
Autor:
Bouillot, Olivier
Multizeta values are real numbers which span a complicated algebra: there exist two different interacting products. A functional analog of these numbers is defined so as to obtain a better understanding of them, the Hurwitz multizeta functions, which
Externí odkaz:
http://arxiv.org/abs/1404.0997
Autor:
Bouillot, Olivier
Publikováno v:
In Comptes rendus - Mathématique October 2016 354(10):965-970
Autor:
Bouillot, Olivier
Publikováno v:
In Advances in Applied Mathematics October 2015 71:68-124
Autor:
Bouillot, Olivier
Publikováno v:
Mathematical Software – ICMS 2020
In this extended abstract, we present how to compute and visualize phase portraits of bi-dimensional Zeta Values. Such technology is useful to explore bi-dimensional Zeta Values and in long-term quest to discover a 2D-Riemann hypothesis. To reach thi
Autor:
Bouillot, Olivier
Publikováno v:
Mathématiques générales [math.GM]. Université Paris Sud-Paris XI, 2011. Français. ⟨NNT : 2011PA112224⟩
This work contains two independant parts, witch are deeply very closed. The first part deals with the calculation and the numerical evaluation of the holomor¬phic invariants of tangent to identity diffeomorphisms, in the type-case. ln particular, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::d77f3941d1aff57abac6dec96c62aaea
https://tel.archives-ouvertes.fr/tel-00647909/file/VD_BOUILLOT_OLIVIER_19102011.pdf
https://tel.archives-ouvertes.fr/tel-00647909/file/VD_BOUILLOT_OLIVIER_19102011.pdf