Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Boudjeriou, Tahir"'
Autor:
Boudjeriou, Tahir
Publikováno v:
In Applied Mathematics Letters September 2024 155
Publikováno v:
In Journal of Differential Equations 15 August 2024 400:457-486
Autor:
Boudjeriou, Tahir, Van Thin, Nguyen
Publikováno v:
In Nonlinear Analysis: Real World Applications August 2024 78
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 July 2024 535(2)
Autor:
Boudjeriou, Tahir
In this paper we are concerned with the following Kirchhoff type problem involving the 1-Laplace operator : \begin{equation*} \left\{\begin{array}{llc} u_{t}-m\left(\int_{\Omega}|Du|\right)\Delta_{1} u=0 & \text{in}\ & \Omega\times (0,+\infty) , \\ u
Externí odkaz:
http://arxiv.org/abs/2108.02273
Autor:
Boudjeriou, Tahir
In this paper, we consider a non-local diffusion equation involving the fractional $p(x)$-Laplacian with nonlinearities of variable exponent type. Employing the sub-differential approach we establish the existence of local solutions. By combining the
Externí odkaz:
http://arxiv.org/abs/2006.11859
Autor:
Boudjeriou, Tahir
In this paper, we study the following Dirichlet problem for a parabolic equation involving fractional $p$-Laplacian with logarithmic nonlinearity \begin{equation*}\label{eq}\left\{ \begin{array}{llc} u_{t}+(-\Delta)^{s}_{p}u+|u|^{p-2}u=|u|^{p-2}u\log
Externí odkaz:
http://arxiv.org/abs/2006.11178
In this paper we use the dynamical methods to establish the existence of nontrivial solution for a class of nonlocal problem of the type $$ \left\{\begin{array}{l} -a\left(x,\int_{\Omega}g(u)\,dx \right)\Delta u =f(u), \quad x \in \Omega \\ u=0, \hsp
Externí odkaz:
http://arxiv.org/abs/2003.11863
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.