Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Boucksom, S."'
Let X be a smooth projective Berkovich space over a complete discrete valuation field K of residue characteristic zero, and assume that X is defined over a function field admitting K as a completion. Let further m be a positive measure on X and L be
Externí odkaz:
http://arxiv.org/abs/1201.0188
Let X be a smooth projective Berkovich space over a complete discrete valuation field K of residue characteristic zero, endowed with an ample line bundle L. We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metri
Externí odkaz:
http://arxiv.org/abs/1201.0187
We show that degenerate complex Monge-Ampere equations in a big cohomology class of a compact Kaehler manifold can be solved using a variational method independent of Yau's theorem. Our formulation yields in particular a natural pluricomplex analogue
Externí odkaz:
http://arxiv.org/abs/0907.4490
We explain how to deduce from recent results in the Minimal Model Program a general uniruledness theorem for base loci of adjoint divisors. We also show how to recover special cases by extending a technique introduced by Takayama.
Comment: versi
Comment: versi
Externí odkaz:
http://arxiv.org/abs/0902.1142
We define non-pluripolar products of closed positive currents on a compact Kaehler manifold. We show that a positive non-pluripolar measure can be written in a unique way as the top degree self-intersection (in the non-pluripolar sense) of a closed p
Externí odkaz:
http://arxiv.org/abs/0812.3674
Autor:
Berman, R., Boucksom, S.
We prove the several variable version of the classical equidistribution theorem for Fekete points of a compact subset of the complex plane, which settles a well-known conjecture in pluri-potential theory. The result is obtained as a special case of a
Externí odkaz:
http://arxiv.org/abs/0807.0035
We study the degree growth of iterates of meromorphic selfmaps of compact Kahler surfaces. Using cohomology classes on the Riemann-Zariski space we show that the degrees grow similarly to those of mappings that are algebraically stable on some birati
Externí odkaz:
http://arxiv.org/abs/math/0608267
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We give a variational proof of a version of the Yau-Tian-Donaldson conjecture for twisted K\"ahler-Einstein currents, and use this to express the greatest (twisted) Ricci lower bound in terms of a purely algebro-geometric stability threshold. Our app
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::129f5306d23fbb53d7362748360567e9
https://hal.archives-ouvertes.fr/hal-01708674
https://hal.archives-ouvertes.fr/hal-01708674