Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Bouchot, Nicolas"'
Autor:
Berger, Quentin, Bouchot, Nicolas
In this article, we study a discrete version of a Dirichlet problem in an open bounded set $D\subset \mathbb{R}^d$, in dimension $d\geq 2$. More precisely, we consider the simple random walk on $\mathbb{Z}^d$, $d\geq 2$, killed upon exiting the large
Externí odkaz:
http://arxiv.org/abs/2408.15858
Autor:
Bouchot, Nicolas
In this paper we consider the simple random walk on $\mathbb{Z}^d$, $d \geq 3$, conditioned to stay in a large domain $D_N$ of typical diameter $N$. Considering the range up to time $t_N \geq N^{2+\delta}$ for some $\delta > 0$, we establish a coupli
Externí odkaz:
http://arxiv.org/abs/2405.14329
Autor:
Bouchot, Nicolas
The purpose of this paper is to study a one-dimensional polymer penalized by its range and placed in a random environment $\omega$. The law of the simple symmetric random walk up to time $n$ is modified by the exponential of the sum of $\beta \omega_
Externí odkaz:
http://arxiv.org/abs/2305.07727
Autor:
Bouchot, Nicolas
In this article we study a one dimensional model for a polymer in a poor solvent: the random walk on $\mathbb{Z}$ penalized by its range. More precisely, we consider a Gibbs transformation of the law of the simple symmmetric random walk by a weight $
Externí odkaz:
http://arxiv.org/abs/2202.11953
Autor:
Bouchot, Nicolas1 nicolas.bouchot@sorbonne-universite.fr
Publikováno v:
ALEA. Latin American Journal of Probability & Mathematical Statistics. 2024, Vol. 21 Issue 1, p791-813. 23p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bouchot, Nicolas
The purpose of this paper is to study a one-dimensional polymer penalized by its range and placed in a random environment $\omega$. The law of the simple symmetric random walk up to time $n$ is modified by the exponential of the sum of $\beta \omega_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf0fec65637742f5c9612b9121e95bcc
http://arxiv.org/abs/2305.07727
http://arxiv.org/abs/2305.07727