Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Boubaker Boufama"'
Publikováno v:
Pattern Recognition. 43:1421-1430
The linear discriminant analysis (LDA) is a linear classifier which has proven to be powerful and competitive compared to the main state-of-the-art classifiers. However, the LDA algorithm assumes the sample vectors of each class are generated from un
Publikováno v:
ICDIM
The Kernel Support Vector Machine (KSVM) is a powerful nonlinear classification methodology where, the Support Vectors (SVs) fully describe the decision surface by incorporating local information in the Kernel space. On the other hand, the Kernel Fis
Autor:
Boubaker Boufama, Amir Amintabar
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642026102
ICIAR
ICIAR
Identification of planes from a pair of uncalibrated stereo images is a challenging problem as it can lead to extracting virtual planes instead of physical ones, especially for complex scenes. We propose a new homography-based approach to extract phy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9c30264312ba3be2279ce6abcc14e272
https://doi.org/10.1007/978-3-642-02611-9_72
https://doi.org/10.1007/978-3-642-02611-9_72
Autor:
Boubaker Boufama, Riadh Ksantini
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642026102
ICIAR
ICIAR
The Linear Discriminant Analysis (LDA) is a linear classifier which has proven to be powerful and competitive compared to the main state-of-the-art classifiers. However, the LDA assumes that the class conditional distributions are symmetric Gaussians
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ef42641fbf83569ecc9425b0a9240c44
https://doi.org/10.1007/978-3-642-02611-9_46
https://doi.org/10.1007/978-3-642-02611-9_46