Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Botirov, G. I."'
Autor:
Botirov, G. I., Haydarov, F. H.
In the present paper we continue the investigation from [1] and consider the SOS (solid-on-solid) model on the Cayley tree of order $k \geq 2$. In the ferromagnetic SOS case on the Cayley tree, we find three solutions to a class of period-4 height-pe
Externí odkaz:
http://arxiv.org/abs/2007.10676
Autor:
Botirov, G. I., Rahmatullaev, M. M.
We consider Potts model, with competing interactions and countable spin values $\Phi=\{0,1,\dots \}$ on a Cayley tree of order three. We study periodic ground states for this model.
Externí odkaz:
http://arxiv.org/abs/1803.00769
Autor:
Rozikov, U. A., Botirov, G. I.
We consider models with nearest-neighbor interactions and with the set $[0,1]$ of spin values, on a Cayley tree of order $k\geq 1$. It is known that the "splitting Gibbs measures" of the model can be described by solutions of a nonlinear integral equ
Externí odkaz:
http://arxiv.org/abs/1705.09325
In this paper we consider models with nearest-neighbor interactions and with the set [0,1] of spin values, on a Bethe lattice (Cayley tree) of an arbitrary order. These models depend on parameter $\theta$. We describe all of Gibbs measures in any rig
Externí odkaz:
http://arxiv.org/abs/1703.09060
Autor:
Botirov, G. I.1,2 (AUTHOR) botirovg@mathinst.uz, Mustafoyeva, Z. E.1 (AUTHOR)
Publikováno v:
Theoretical & Mathematical Physics. Feb2023, Vol. 214 Issue 2, p273-281. 9p.
In this paper we consider a model with nearest-neighbor interactions and with the set $[0,1]$ of spin values, on a Cayley tree of order $k \geq 2$. To study translation-invariant Gibbs measures of the model we drive an nonlinear functional equation.
Externí odkaz:
http://arxiv.org/abs/1210.7311
Autor:
Botirov, G. I.
We consider the Potts model with two-step interactions and spin values 1,2,3,4 on a Cayley tree. We describe periodic ground states and verify the Peierls condition for the model.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1108.3178
Autor:
Botirov, G. I.
In this paper we consider a model on a Cayley tree which has a finite radius of interactions, the model was first considered by Rozikov. We describe a set of periodic ground states of the model.
Comment: 5 pages
Comment: 5 pages
Externí odkaz:
http://arxiv.org/abs/0903.2985
Autor:
Botirov, G. I., Rozikov, U. A.
In the paper we generalize results of paper [12] for a $q$- component models on a Cayley tree of order $k\geq 2$. We generalize them in two directions: (1) from $k=2$ to any $k\geq 2;$ (2) from concrete examples (Potts and SOS models) of $q-$ compone
Externí odkaz:
http://arxiv.org/abs/math-ph/0608025
Autor:
Botirov, G. I.1,2 (AUTHOR) botirovg@mathinst.uz, Qayumov, U. U.3 (AUTHOR)
Publikováno v:
Theoretical & Mathematical Physics. Nov2021, Vol. 209 Issue 2, p1633-1642. 10p.