Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Bosman, Johan"'
Publikováno v:
In Expert Systems With Applications 1 December 2024 255 Part C
Autor:
Bosman, Johan.
Proefschrift Universiteit Twente, Enschede.
Met lit. opg. - Met een samenvatting in het Nederlands.
Met lit. opg. - Met een samenvatting in het Nederlands.
Externí odkaz:
http://doc.utwente.nl/58020
Autor:
Bosman, Johan
Vooronderstellings by die Beradene - 'n Pastorale Studie is a doctoral dissertation which explores the proposition and find that identifying presuppositions ("core beliefs") and taking it into account enhances the effectiveness of the pastoral counse
Externí odkaz:
http://hdl.handle.net/10394/709
Autor:
Bosman, Johan
Pastoraat aan die Afrika-mens is a Masters' thesis, which explores the hypotheses and finds that an African life and worIdview must consciously be taken into account in pastoral care to Christians with an African life and worldview in order to improv
Externí odkaz:
http://hdl.handle.net/10394/3
Publikováno v:
Int. Math. Res. Not. IMRN 2014 (11) (2014), 2885-2923
We study the structure of the Mordell--Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if $T$ is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup $T$ is empty, or i
Externí odkaz:
http://arxiv.org/abs/1201.0252
Autor:
Bosman, Johan
For each of the groups PSL2(F25), PSL2(F32), PSL2(F49), PGL2(F25), and PGL2(F27), we display the first explicitly known polynomials over Q having that group as Galois group. Each polynomial is related to a Galois representation associated to a modula
Externí odkaz:
http://arxiv.org/abs/1109.6879
Autor:
Bosman, Johan
In this paper we explicitly compute mod-l Galois representations associated to modular forms. To be precise, we look at cases with l<=23 and the modular forms considered will be cusp forms of level 1 and weight up to 22. We present the result in term
Externí odkaz:
http://arxiv.org/abs/0710.1237
Autor:
Bosman, Johan
In this paper we show an explicit polynomial in Q[x] that has Galois group SL2(F16), filling in a gap in the tables of Juergen Klueners and Gunther Malle. The computation of this polynomial uses modular forms and their Galois representations.
Co
Co
Externí odkaz:
http://arxiv.org/abs/math/0701442
This is a book about computational aspects of modular forms and the Galois representations attached to them. The main result is the following: Galois representations over finite fields attached to modular forms of level one can, in almost all cases,
Externí odkaz:
http://arxiv.org/abs/math/0605244
Publikováno v:
In Biophysical Journal 4 March 2014 106(5):1174-1181