Zobrazeno 1 - 10
of 177
pro vyhledávání: '"Boscaggin, Alberto"'
The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \var
Externí odkaz:
http://arxiv.org/abs/2405.11189
We investigate bifurcation of closed orbits with a fixed energy level for a class of nearly integrable Hamiltonian systems with two degrees of freedom. More precisely, we make a joint use of Moser invariant curve theorem and Poincar\'e-Birkhoff fixed
Externí odkaz:
http://arxiv.org/abs/2310.02615
We deal with the following semilinear equation in exterior domains \[-\Delta u + u = a(x)|u|^{p-2}u,\qquad u\in H^1_0({A_R}), \] where ${A_R} := \{x\in\mathbb{R}^N:\, |x|>{R}\}$, $N\ge 3$, $R>0$. Assuming that the weight $a$ is positive and satisfies
Externí odkaz:
http://arxiv.org/abs/2309.03029
We consider two different relativistic versions of the Kepler problem in the plane: the first one involves the relativistic differential operator, the second one involves a correction for the usual gravitational potential due to Levi-Civita. When a s
Externí odkaz:
http://arxiv.org/abs/2303.00336
We consider the Lorentz force equation $$ \frac{d}{dt}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = q \left(E(t,x) + \dot x \times B(t,x)\right), \qquad x \in \mathbb{R}^3, $$ in the physically relevant case of a singular electric fiel
Externí odkaz:
http://arxiv.org/abs/2302.06189
We provide a Maupertuis-type principle for the following system of ODE, of interest in special relativity: $$ \frac{\rm d}{{\rm d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^2/c^2}}\right)=\nabla V(x),\qquad x\in\Omega \subset \mathbb{R}^n, $$ where $m
Externí odkaz:
http://arxiv.org/abs/2206.08667
We consider a planar Hamiltonian system of the type $Jz' = \nabla_z H(t,z)$, where $H: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$ is a function periodic in the time variable, such that $\nabla_z H(t,0) \equiv 0$ and $\nabla_z H(t,z)$ is asymptoti
Externí odkaz:
http://arxiv.org/abs/2203.02998
We study relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T-periodic solutions, parameterized by
Externí odkaz:
http://arxiv.org/abs/2202.05604
Periodic perturbations of central force problems and an application to a restricted $3$-body problem
We consider a perturbation of a central force problem of the form \begin{equation*} \ddot x = V'(|x|) \frac{x}{|x|} + \varepsilon \,\nabla_x U(t,x), \quad x \in \mathbb{R}^{2} \setminus \{0\}, \end{equation*} where $\varepsilon \in \mathbb{R}$ is a s
Externí odkaz:
http://arxiv.org/abs/2110.11635
Publikováno v:
In Journal de mathématiques pures et appliquées June 2024 186:31-73