Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Boroński, J. P."'
A compact space $Y$ is called homeo-product-minimal if given any minimal system $(X,T)$, it admits a homeomorphism $S:Y\to Y$, such that the product system $(X\times Y,T\times S)$ is minimal. We show that a large class of cofrontiers is homeo-product
Externí odkaz:
http://arxiv.org/abs/2304.11469
We prove that for any nondegenerate dendrite $D$ there exist topologically mixing maps $F : D \to D$ and $f : [0, 1] \to [0, 1]$, such that the natural extensions (aka shift homeomorphisms) $\sigma_F$ and $\sigma_f$ are conjugate, and consequently th
Externí odkaz:
http://arxiv.org/abs/2110.11440
Autor:
Boronski, J. P.
Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be an orientation preserving homeomorphism of the plane. For any bounded orbit $\mathcal{O}(x)=\{h^n(x):n\in\mathbb{Z}\}$ there exists a fixed point $x'\in\mathbb{R}^2$ of $h$ linked to $\mathcal{O}(x)$ in the
Externí odkaz:
http://arxiv.org/abs/2108.12696
We prove the entropy conjecture of M. Barge from 1989: for every $r\in [0,\infty]$ there exists a pseudo-arc homeomorphism $h$, whose topological entropy is $r$. Until now all pseudo-arc homeomorphisms with known entropy have had entropy $0$ or $\inf
Externí odkaz:
http://arxiv.org/abs/2105.11133
A compact space $X$ is said to be minimal if there exists a map $f:X\to X$ such that the forward orbit of any point is dense in $X$. We consider rigid minimal spaces, motivated by recent results of Downarowicz, Snoha, and Tywoniuk [J. Dyn. Diff. Eq.,
Externí odkaz:
http://arxiv.org/abs/1912.12858
We show that every (invertible, or noninvertible) minimal Cantor system embeds in $\mathbb{R}$ with vanishing derivative everywhere. We also study relations between local shrinking and periodic points.
Externí odkaz:
http://arxiv.org/abs/1902.10641
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boronski, J. P., Kozlowski, G.
Let $M$ be a compact manifold of dimension at least 2. If $M$ admits a minimal homeomorphism then $M$ admits a minimal noninvertible map.
Comment: To appear in Proc. Amer. Math. Soc
Comment: To appear in Proc. Amer. Math. Soc
Externí odkaz:
http://arxiv.org/abs/1809.00835
We show that the Cartesian product of the arc and a solenoid has the fupcon property, therefore answering a question raised by Illanes. This combined with Illanes' result implies that the product of a Knaster continuum and a solenoid has the fupcon p
Externí odkaz:
http://arxiv.org/abs/1709.01885