Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Borisenko Alexander"'
Autor:
Zakhvalinskii Vasilii, Borisenko Alexander, Nikulicheva Tatyana, Kochura Alexey, Htet Aung Zaw, Pilyuk Evgeniy
Publikováno v:
St. Petersburg Polytechnical University Journal: Physics and Mathematics, Vol 15, Iss 3.1 (2022)
The modified Bridgeman method was used to obtain single crystals of (Cd0.69Zn0.31)3As2. It has been established that the studied sample crystallizes in space group P42/nmc with lattice parameters a = 8.78 Å, b = 12.42 Å. We have investigated the el
Externí odkaz:
https://doaj.org/article/92b24a69b8cb4e2b82a541f611b159e8
Autor:
Nikolaeva, Anastasiia S., Zalivako, Ilia V., Borisenko, Alexander S., Semenin, Nikita V., Galstyan, Kristina P., Korolkov, Andrey E., Kiktenko, Evgeniy O., Khabarova, Ksenia Yu., Semerikov, Ilya A., Fedorov, Aleksey K., Kolachevsky, Nikolay N.
An efficient implementation of the Toffoli gate is of conceptual importance for running various quantum algorithms, including Grover's search and Shor's integer factorization. However, direct realizations of the Toffoli gate require either a prohibit
Externí odkaz:
http://arxiv.org/abs/2407.07758
Autor:
Borisenko, Alexander A.
In 1972, E. P. Senkin generalized the celebrated theorem of A. V. Pogorelov on unique determination of compact convex surfaces by their intrinsic metrics in the Euclidean 3-space $E^3$ to higher dimensional Euclidean spaces $E^{n+1}$ under a mild ass
Externí odkaz:
http://arxiv.org/abs/2406.15761
Autor:
Zalivako, Ilia V., Gircha, Alexander I., Nikolaeva, Anastasiia S., Drozhzhin, Denis A., Borisenko, Alexander S., Korolkov, Andrei E., Semenin, Nikita V., Galstyan, Kristina P., Kamenskikh, Pavel A., Smirnov, Vasilii N., Aksenov, Mikhail A., Sidorov, Pavel L., Kiktenko, Evgeniy O., Khabarova, Ksenia Yu., Fedorov, Aleksey K., Kolachevsky, Nikolay N., Semerikov, Ilya A.
Here we present the results of benchmarking of a quantum processor based on trapped $^{171}$Yb$^{+}$ ions by performing basic quantum machine learning algorithms. Specifically, we carry out a supervised binary classification of small-scale digits ima
Externí odkaz:
http://arxiv.org/abs/2406.12007
Autor:
Zalivako, Ilia V., Nikolaeva, Anastasiia S., Borisenko, Alexander S., Korolkov, Andrei E., Sidorov, Pavel L., Galstyan, Kristina P., Semenin, Nikita V., Smirnov, Vasilii N., Aksenov, Mikhail A., Makushin, Konstantin M., Kiktenko, Evgeniy O., Fedorov, Aleksey K., Semerikov, Ilya A., Khabarova, Ksenia Yu., Kolachevsky, Nikolay N.
We demonstrate a quantum processor based on a 3D linear Paul trap that uses $^{171}$Yb$^{+}$ ions with 8 individually controllable four-level qudits (ququarts), which is computationally equivalent to a 16-qubit quantum processor. The design of the de
Externí odkaz:
http://arxiv.org/abs/2402.03121
Autor:
Kazmina, Alena S., Zalivako, Ilia V., Borisenko, Alexander S., Nemkov, Nikita A., Nikolaeva, Anastasiia S., Simakov, Ilya A., Kuznetsova, Arina V., Egorova, Elena Yu., Galstyan, Kristina P., Semenin, Nikita V., Korolkov, Andrey E., Moskalenko, Ilya N., Abramov, Nikolay N., Besedin, Ilya S., Kalacheva, Daria A., Lubsanov, Viktor B., Bolgar, Aleksey N., Kiktenko, Evgeniy O., Khabarova, Ksenia Yu., Galda, Alexey, Semerikov, Ilya A., Kolachevsky, Nikolay N., Maleeva, Nataliya, Fedorov, Aleksey K.
Publikováno v:
Phys. Rev. A 109, 032619 (2024)
Scalable quantum computers hold the promise to solve hard computational problems, such as prime factorization, combinatorial optimization, simulation of many-body physics, and quantum chemistry. While being key to understanding many real-world phenom
Externí odkaz:
http://arxiv.org/abs/2310.20432
Geodesic loops on polyhedra were studied only for Euclidean space and it was known that there are no simple geodesic loops on regular tetrahedra. Here we prove that: 1) On the spherical space, there are no simple geodesic loops on tetrahedra with int
Externí odkaz:
http://arxiv.org/abs/2308.01699
Let $P$ be a convex polygon in a Hadamard surface $M$ with curvature $K$ satisfying $-k_2^2 \ge K \ge -k_1^2$. We give an upper bound of the circumradius of $P$ in terms of a lower bound of the curvature of $P$ at its vertices.
Externí odkaz:
http://arxiv.org/abs/2307.09123
Autor:
Borisenko, Alexander, Miquel, Vicente
Let $M$ be a $2$-space form. Let $P$ be a convex polygon in $M$. For these polygons, we define (and justify) a curvature $\kappa_i$ at each vertex $A_i$ of the polygon and and prove the following Blaschke's type theorem: If $P$ is a convex plygon in
Externí odkaz:
http://arxiv.org/abs/2305.07566
Autor:
Zalivako, Ilia V., Borisenko, Alexander S., Semerikov, Ilya A., Korolkov, Andrey, Sidorov, Pavel L., Galstyan, Kristina, Semenin, Nikita V., Smirnov, Vasiliy, Aksenov, Mikhail A., Fedorov, Aleksey K., Khabarova, Ksenia Yu., Kolachevsky, Nikolay N.
Publikováno v:
Front. Quantum. Sci. Technol. 2, 1228208 (2023)
The use of multilevel quantum information carriers, also known as qudits, attracts a significant deal of interest as a way for further scalability of quantum computing devices. However, a nontrivial task is to experimentally achieve a gain in the eff
Externí odkaz:
http://arxiv.org/abs/2305.06071