Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Borikhanov, Meiirkhan"'
Publikováno v:
Journal of Mathematical Analysis and Applications, 536:1 (2024), 128172
In the present paper, we consider the parabolic and hyperbolic inequalities with a singular potentials and with a critical nonlinearities in the annulus domain. The problems are studied with Neumann-type and Dirichlet-type boundary conditions on the
Externí odkaz:
http://arxiv.org/abs/2401.14102
Publikováno v:
Journal of Differential Equations, 380 (2024), 1-23
The paper studies the large-time behavior of solutions to the Robin problem for PDEs with critical nonlinearities. For the considered problems, nonexistence results are obtained, which complements the interesting recent results by Ikeda et al. [J. Di
Externí odkaz:
http://arxiv.org/abs/2303.14563
In this paper, we study the nonlinear Sobolev type equations on the Heisenberg group. We show that the problems do not admit nontrivial local weak solutions, i.e. "instantaneous blow up" occurs, using the nonlinear capacity method. Namely, by choosin
Externí odkaz:
http://arxiv.org/abs/2303.05594
In this paper, we study a critical exponent to the semilinear heat equation with forcing term on Heisenberg group. Our technique of proof is based on methods of nonlinear capacity estimates specifically adapted to the nature of the Heisenberg group.
Externí odkaz:
http://arxiv.org/abs/2207.03744
Publikováno v:
Applied Mathematics Letters, 2022
In the present paper, we study an inhomogeneous pseudo-parabolic equation with nonlocal nonlinearity $$u_t-k\Delta u_t-\Delta u=I^\gamma_{0+}(|u|^{p})+\omega(x),\,\ (t,x)\in(0,\infty)\times\mathbb{R}^N,$$ where $p>1,\,k\geq 0$, $\omega(x)\neq0$ and $
Externí odkaz:
http://arxiv.org/abs/2206.02900
Publikováno v:
Fractional Calculus and Applied Analysis, 2022
In the present paper, we study the Cauchy-Dirichlet problem to the nonlocal nonlinear diffusion equation with polynomial nonlinearities $$\mathcal{D}_{0|t}^{\alpha }u+(-\Delta)^s_pu=\gamma|u|^{m-1}u+\mu|u|^{q-2}u,\,\gamma,\mu\in\mathbb{R},\,m>0,q>1,$
Externí odkaz:
http://arxiv.org/abs/2205.15664
Publikováno v:
In Journal of Differential Equations 25 January 2024 380:1-23
Publikováno v:
Chaos, Solitons and Fractals, 148 (2021), 1-18
In the present paper initial problems for the semilinear integro-differential diffusion equation and system are considered. The analogue of Duhamel principle for the linear integro-differential diffusion equation is proved. The results on existence o
Externí odkaz:
http://arxiv.org/abs/1910.06989
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.