Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Boozer, David"'
Autor:
Boozer, David
Kronheimer and Mrowka used gauge theory to define a functor $J^\sharp$ from a category of webs in $\mathbb{R}^3$ to the category of finite-dimensional vector spaces over the field of two elements. They also suggested a possible combinatorial replacem
Externí odkaz:
http://arxiv.org/abs/2304.07659
Autor:
Boozer, David
We describe a strategy for constructing reduced Khovanov homology for links in lens spaces by generalizing a symplectic interpretation of reduced Khovanov homology for links in $S^3$ due to Hedden, Herald, Hogancamp, and Kirk. The strategy relies on
Externí odkaz:
http://arxiv.org/abs/2210.16452
Publikováno v:
In Radiation Measurements August 2024 176
Autor:
Boozer, David
We show that the reduced Khovanov homology of an oriented link $L$ in $S^3$ can be expressed as the homology of a chain complex constructed from a description of $L$ as the closure of a 1-tangle diagram $T$ in the annulus. Our chain complex is constr
Externí odkaz:
http://arxiv.org/abs/2102.10748
Autor:
Boozer, David
We explicitly describe the moduli space $M^s(X,3)$ of stable rank 2 parabolic bundles over an elliptic curve $X$ with trivial determinant bundle and 3 marked points. Specifically, we exhibit $M^s(X,3)$ as a blow-up of an embedded elliptic curve in $(
Externí odkaz:
http://arxiv.org/abs/2007.02524
Autor:
Boozer, David
Kronheimer and Mrowka recently suggested a possible approach towards a new proof of the four color theorem that does not rely on computer calculations. Their approach is based on a functor $J^\sharp$, which they define using gauge theory, from the ca
Externí odkaz:
http://arxiv.org/abs/1908.07133
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tamashiro Aaron S., Stone Daniel K., Anspach Logan, Champine Brian, Firpo Mike, Uchiyama Sophia, Witter Paige, Yap-Chiongco Paul, Mitchell Scarlett, Percher Catherine, Heinrichs David, Goda Joetta D., Grove Travis, Cutler Theresa, Thompson Nicholas, Weldon Robert, Overbay Lauren, Omoto Trevor, Gadd Milan, Hillmer Elizabeth, Sharisky Laurel, Ward Dann, Kilbane John, Roberts David, Abbott R., Epps Joy, Vogt James, Healy Heather, Murphy Sean, Ludwigsen Robert, Veinot Kevin, Mcmahon Kieran, Detweiler Alexandra, Romanyukha Alexander, Boozer David, Consani Keith, Angus Philip, Vessey Nicholas, Chapman Kirk, McCabe Gordon, Cornick Emily, Trompier François, Ristic Yoann, Herth Johann, Pignet Sophie
Publikováno v:
EPJ Web of Conferences, Vol 308, p 06001 (2024)
Integral Experiment Request (IER) 538 is part of a series of dose characterization and nuclear accident dosimetry (NAD) exercises performed under the Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This is the second NAD exercis
Externí odkaz:
https://doaj.org/article/756f4473804f419481fa22d359affe6f
Autor:
Boozer, David
Publikováno v:
Indiana Univ. Math. J. 70 (2021), 2065-2106
We describe a scheme for constructing generating sets for Kronheimer and Mrowka's singular instanton knot homology for the case of knots in lens spaces. The scheme involves Heegaard-splitting a lens space containing a knot into two solid tori. One so
Externí odkaz:
http://arxiv.org/abs/1811.01536
Autor:
Boozer, David
Publikováno v:
Algebr. Geom. Topol. 21 (2021) 543-600
We propose definitions of complex manifolds $\mathcal{P}_M(X,m,n)$ that could potentially be used to construct the symplectic Khovanov homology of $n$-stranded links in lens spaces. The manifolds $\mathcal{P}_M(X,m,n)$ are defined as moduli spaces of
Externí odkaz:
http://arxiv.org/abs/1805.11184