Zobrazeno 1 - 10
of 195
pro vyhledávání: '"Bonneton, Philippe"'
The aim of the present work is to develop a model able to represent the propagation and transformation of waves in nearshore areas. The focus is on the phenomena of wave breaking, shoaling and run-up. These different phenomena are represented through
Externí odkaz:
http://arxiv.org/abs/1902.03021
Autor:
Bonneton, Philippe, Lannes, David
The reconstruction of water wave elevation from bottom pressure measurements is an important issue for coastal applications, but corresponds to a difficult mathematical problem. In this paper we present the derivation of a method which allows the ele
Externí odkaz:
http://arxiv.org/abs/1709.06457
Autor:
Mouragues, Arthur, Bonneton, Philippe, Castelle, Bruno, Marieu, Vincent, Barrett, Aaron, Bonneton, Natalie, Detand, Guillaume, Martins, Kevin, McCarroll, Jak, Morichon, Denis, Poate, Timothy, Padilla, Isaac Rodriguez, Scott, Tim, Sous, Damien
Publikováno v:
Journal of Coastal Research, 2020 Apr 01, 578-582.
Externí odkaz:
https://www.jstor.org/stable/48748764
Autor:
Martins, Kévin, Bonneton, Philippe, Bayle, Paul M., Blenkinsopp, Chris E., Mouragues, Arthur, Michallet, Hervé
Publikováno v:
Journal of Coastal Research, 2020 Apr 01, 1189-1194.
Externí odkaz:
https://www.jstor.org/stable/48748878
Publikováno v:
In Coastal Engineering August 2021 167
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In European Journal of Mechanics / B Fluids January-February 2019 73:55-68
Publikováno v:
J.Comput.Phys.230:1479-1498,2011
The fully nonlinear and weakly dispersive Green-Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite
Externí odkaz:
http://arxiv.org/abs/1005.1586
Autor:
Lannes, David, Bonneton, Philippe
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface
Externí odkaz:
http://arxiv.org/abs/0710.1349
Autor:
Bertin, Xavier, de Bakker, Anouk, van Dongeren, Ap, Coco, Giovanni, André, Gael, Ardhuin, Fabrice, Bonneton, Philippe, Bouchette, Frédéric, Castelle, Bruno, Crawford, Wayne C., Davidson, Mark, Deen, Martha, Dodet, Guillaume, Guérin, Thomas, Inch, Kris, Leckler, Fabien, McCall, Robert, Muller, Héloïse, Olabarrieta, Maitane, Roelvink, Dano, Ruessink, Gerben, Sous, Damien, Stutzmann, Éléonore, Tissier, Marion
Publikováno v:
In Earth-Science Reviews February 2018 177:774-799