Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Bonckaert, Patrick"'
Autor:
Bonckaert, Patrick, Verstringe, Freek
We give an explicit expression for the (finitely) flat remainder after analytic normal form reduction of a family of planar saddles of diffeomorphisms or vector fields. We distinguish between a rational or irrational ratio of the moduli of the eigenv
Externí odkaz:
http://arxiv.org/abs/0802.3801
Autor:
Bonckaert, Patrick
Publikováno v:
Transactions of the American Mathematical Society, 1996 Mar 01. 348(3), 997-1011.
Externí odkaz:
https://www.jstor.org/stable/2155228
Autor:
Bonckaert, Patrick
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 November 2014 419(2):1143-1160
Autor:
Bonckaert, Patrick1
Publikováno v:
Bulletin of the Belgian Mathematical Society - Simon Stevin. Mar2019, Vol. 26 Issue 1, p21-62. 42p.
Autor:
BONCKAERT, Patrick, NAUDOT, Vincent
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 266, Pp 1-29 (2017)
We show that any germ of smooth hyperbolic diffeomophism at a fixed point is conjugate to its linear part, using a transformation with a Mourtada type functions, which (roughly) means that it may contain terms like $x \log |x|$. Such a conjugacy admi
Autor:
Bonckaert, Patrick, Fontich, Ernest *
Publikováno v:
In Journal of Differential Equations 2005 214(1):128-155
Publikováno v:
In Comptes rendus - Mathématique 2003 336(1):19-22
Autor:
Bonckaert, Patrick, Fontich, Ernest *
Publikováno v:
In Journal of Differential Equations 2003 191(2):490-517
Publikováno v:
Dynamical Systems: An International Journal. Mar2003, Vol. 18 Issue 1, p69. 20p.
Autor:
Bonckaert, Patrick
Given a 1:-1 resonant saddle singularity of a planar analytic vector field, we provide a linearization procedure using a series expansion in compensators of Mourtada-type, and show that this series has Gevrey-1 asymptotics. In case of an analytic Poi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______105::5532db218e53bf0ac3bf47fb4519fc90
http://hdl.handle.net/1942/16809
http://hdl.handle.net/1942/16809