Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Bonacini, Paola"'
Autor:
Bonacini, Paola, Marino, Lucia
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Apr 01. 14(1), 183-197.
Externí odkaz:
https://www.jstor.org/stable/26964953
Autor:
Bonacini, Paola, Marino, Lucia
Let $\Sigma=(X,\mathcal B)$ a $4$-cycle system of order $v=1+8k$. A $c$-colouring of type $s$ is a map $\phi\colon \mathcal B\rightarrow \mathcal C$, with $C$ set of colours, such that exactly $c$ colours are used and for every vertex $x$ all the blo
Externí odkaz:
http://arxiv.org/abs/1406.5454
Autor:
Bonacini, Paola1 (AUTHOR) bonacini@dmi.unict.it, Gionfriddo, Mario1 (AUTHOR), Marino, Lucia1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Jan2023, Vol. 11 Issue 2, p408. 8p.
Let G = (V, E) be a multigraph without loops and for any x {\in}V let E(x) be the set of edges of G incident to x. A homogeneous edge-coloring of G is an assignment of an integer m >= 2 and a coloring c:E {\to} S of the edges of Gsuchthat|S| = mandfo
Externí odkaz:
http://arxiv.org/abs/1203.4531
Autor:
Bonacini, Paola
Given $\mathbb P^4_k$, with $k$ algebraically closed field of characteristic $p>0$, and $X\subset \mathbb P^4_k$ integral surface of degree $d$, let $Y=X\cap H$ be the general hyperplane section of $X$. We suppose that $h^0\mathscr I_Y(s)\ne 0$ and $
Externí odkaz:
http://arxiv.org/abs/1109.1738
Autor:
Bonacini, Paola, Marino, Lucia
Let X be a zero-dimensional scheme in P1 \times P1. Then X has a minimal free resolution of length 2 if and only if X is ACM. In this paper we determine a class of reduced schemes whose resolutions, similarly to the ACM case, can be obtained by their
Externí odkaz:
http://arxiv.org/abs/1108.4007
Autor:
Bonacini, Paola, Marino, Lucia
Let $Q = \mathbb P^1 x \mathbb P^1$ and let $X\subset Q$ be a 0-dimensional scheme. This paper is a first step towards the characterization of Hilbert functions of 0- dimensional schemes in $Q$. In particular we show how, under some conditions on $X$
Externí odkaz:
http://arxiv.org/abs/1009.4095
Autor:
Bonacini, Paola, Marino, Lucia
In this paper we determine a class of admissible matrices which are the Hilbert functions of some 0-dimensional schemes in $\mathbb P^1\times\mathbb P^1$.
Externí odkaz:
http://arxiv.org/abs/1009.4059
Autor:
Bonacini, Paola
Publikováno v:
Proceedings of the American Mathematical Society Volume 136, Number 7, July 2008, Pages 2289-2297
If $C \subset P^3_k$ is an integral curve and $k$ an algebraically closed field of characteristic 0, it is known that the points of the general plane section $C \cap H$ of $C$ are in uniform position. From this it follows easily that the general mini
Externí odkaz:
http://arxiv.org/abs/1009.4021
Autor:
Bonacini, Paola
Publikováno v:
Journal of Algebraic Geometry, 18 (2009), 459--475
Laudal's Lemma states that if $C$ is a curve of degree $d > s^2 + 1$ in $\mathbb P^3$ over an algebraically closed field of characteristic 0 such that its plane section is contained in an irreducible curve of degree s, then $C$ lies on a surface of d
Externí odkaz:
http://arxiv.org/abs/1009.4017