Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Bollweg, Dennis"'
We present the first lattice QCD calculation of the rapidity anomalous dimension of transverse-momentum-dependent distributions (TMDs), i.e. the Collins-Soper (CS) kernel, employing the recently proposed Coulomb-gauge-fixed quasi-TMD formalism as wel
Externí odkaz:
http://arxiv.org/abs/2407.10739
Autor:
Baker, Ethan, Bollweg, Dennis, Boyle, Peter, Cloët, Ian, Gao, Xiang, Mukherjee, Swagato, Petreczky, Peter, Zhang, Rui, Zhao, Yong
Publikováno v:
JHEP07(2024)211
We present a direct lattice QCD calculation of the $x$-dependence of the pion distribution amplitude (DA), which is performed using the quasi-DA in large momentum effective theory on a domain-wall fermion ensemble at physical quark masses and spacing
Externí odkaz:
http://arxiv.org/abs/2405.20120
Publikováno v:
Phys.Lett.B 852 (2024) 138617
We present a lattice QCD calculation of the rapidity anomalous dimension of quark transverse-momentum-dependent distributions, i.e., the Collins-Soper (CS) kernel, up to transverse separations of about 1 fm. This unitary lattice calculation is conduc
Externí odkaz:
http://arxiv.org/abs/2403.00664
Autor:
Mazur, Lukas, Bollweg, Dennis, Clarke, David A., Altenkort, Luis, Kaczmarek, Olaf, Larsen, Rasmus, Shu, Hai-Tao, Goswami, Jishnu, Scior, Philipp, Sandmeyer, Hauke, Neumann, Marius, Dick, Henrik, Ali, Sajid, Kim, Jangho, Schmidt, Christian, Petreczky, Peter, Mukherjee, Swagato
Publikováno v:
Comp. Phys. Commun. 300 (2024) 109164
The rise of exascale supercomputers has fueled competition among GPU vendors, driving lattice QCD developers to write code that supports multiple APIs. Moreover, new developments in algorithms and physics research require frequent updates to existing
Externí odkaz:
http://arxiv.org/abs/2306.01098
We discuss algorithms for domain wall fermions focussing on accelerating Hybrid Monte Carlo sampling of gauge configurations. Firstly a new multigrid algorithm for domain wall solvers and secondly a domain decomposed hybrid monte carlo approach appli
Externí odkaz:
http://arxiv.org/abs/2203.17119
Autor:
Boyle, Peter, Bollweg, Dennis, Brower, Richard, Christ, Norman, DeTar, Carleton, Edwards, Robert, Gottlieb, Steven, Izubuchi, Taku, Joo, Balint, Joswig, Fabian, Jung, Chulwoo, Kelly, Christopher, Kronfeld, Andreas, Lin, Meifeng, Osborn, James, Portelli, Antonin, Richings, James, Yamaguchi, Azusa
The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, su
Externí odkaz:
http://arxiv.org/abs/2204.00039
Autor:
Altenkort, Luis, Bollweg, Dennis, Clarke, David Anthony, Kaczmarek, Olaf, Mazur, Lukas, Schmidt, Christian, Scior, Philipp, Shu, Hai-Tao
Publikováno v:
PoS LATTICE2021 (2022) 196
We present $\texttt{SIMULATeQCD}$, HotQCD's software for performing lattice QCD calculations on GPUs. Started in late 2017 and intended as a full replacement of the previous single GPU lattice QCD code used by the HotQCD collaboration, our software h
Externí odkaz:
http://arxiv.org/abs/2111.10354
Autor:
Mazur, Lukas, Bollweg, Dennis, Clarke, David A., Altenkort, Luis, Kaczmarek, Olaf, Larsen, Rasmus, Shu, Hai-Tao, Goswami, Jishnu, Scior, Philipp, Sandmeyer, Hauke, Neumann, Marius, Dick, Henrik, Ali, Sajid, Kim, Jangho, Schmidt, Christian, Petreczky, Peter, Mukherjee, Swagato
Publikováno v:
In Computer Physics Communications July 2024 300
Using recent results on higher order cumulants of conserved charge fluctuations from lattice QCD, we construct mean, variance, skewness, kurtosis, hyper-skewness and hyper-kurtosis of net-baryon number distributions for small baryon chemical potentia
Externí odkaz:
http://arxiv.org/abs/2002.01837
Lattice QCD with staggered fermions at strong coupling has long been studied in a dual representation to circumvent the finite baryon density sign problem. Monte Carlo simulations at finite temperature and density require anisotropic lattices. Recent
Externí odkaz:
http://arxiv.org/abs/1811.03584