Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Boggiatto, Paolo"'
The usefulness of time-frequency analysis methods in the study of quasicrystals was pointed out in a previous paper, where we proved that a tempered distribution $\mu$ on ${\mathbb R}^d$ whose Wigner transform is a measure supported on the cartesian
Externí odkaz:
http://arxiv.org/abs/2405.01907
Quasicrystals are tempered distributions $\mu$ which satisfy symmetric conditions on $\mu$ and $\widehat \mu$. This suggests that techniques from time-frequency analysis could possibly be useful tools in the study of such structures. In this paper we
Externí odkaz:
http://arxiv.org/abs/2106.09364
This paper presents a proof of an uncertainty principle of Donoho-Stark type involving $\varepsilon$-concentration of localization operators. More general operators associated with time-frequency representations in the Cohen class are then considered
Externí odkaz:
http://arxiv.org/abs/1801.03839
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We present some forms of uncertainty principle which involve in a new way localization operators, the concept of $\varepsilon$-concentration and the standard deviation of $L^2$ functions. We show how our results improve the classical Donoho-Stark est
Externí odkaz:
http://arxiv.org/abs/1510.02621
We give a construction of Gabor type frames for suitable separable subspaces of the non-separable Hilbert spaces $AP_2({\mathbb R})$ of almost periodic functions of one variable. Furthermore we determine a non-countable generalized frame for the whol
Externí odkaz:
http://arxiv.org/abs/1412.3587
We prove a formula expressing the gradient of the phase function of a function $f: \mathbb R^d \mapsto \mathbb C$ as a normalized first frequency moment of the Wigner distribution for fixed time. The formula holds when $f$ is the Fourier transform of
Externí odkaz:
http://arxiv.org/abs/1007.0874