Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Bogatyi, Semeon"'
Publikováno v:
Proc. Seminar on Vector and Tensor Analysis, 28 (2012), 86-118
The problem on the minimal number (with respect to deformation) of intersection points of two closed curves on a surface is solved. Following the Nielsen approach, we define classes of intersection points and essential classes of intersection points,
Externí odkaz:
http://arxiv.org/abs/1111.5277
Publikováno v:
Geom. Topol. Monogr. 14 (2008) 49-62
Let M and N be two closed (not necessarily orientable) surfaces, and f a continuous map from M to N. By definition, the minimal multiplicity MMR[f] of the map f denotes the minimal integer k having the following property: f can be deformed into a map
Externí odkaz:
http://arxiv.org/abs/0904.1197
Autor:
Bogatyi, Semeon, Valov, Vesko
Here are two of our main results: Theorem 1. Let X be a normal space with dim X=n and m\geq n+1. Then the space C*(X,R^m) of all bounded maps from X into R^m equipped with the uniform convergence topology contains a dense G_{\delta}-subset consisting
Externí odkaz:
http://arxiv.org/abs/math/0503131
Publikováno v:
Mathematical Notes 76:1-2 (2004), 3-9
We prove that for every $n>2$, the Banach-Mazur compactum Q(n) is the compactification of a Hilbert cube manifold by the Euclidean point. For $n=2$ this result was proved earlier.
Externí odkaz:
http://arxiv.org/abs/math/0209361
Autor:
Bogatyi, Semeon, Valov, Vesko
Publikováno v:
In Topology and its Applications 1 June 2012 159(9):2269-2273
Autor:
Bogatyi, Semeon, Frolkina, Olga
Publikováno v:
In Topology and its Applications 15 April 2012 159(7):1778-1786
Autor:
Bogatyi, Semeon A.
Publikováno v:
In Topology and its Applications 2008 155(17):1876-1887
Publikováno v:
In Topology and its Applications 2000 107(1):13-24
Publikováno v:
In Topology and its Applications 2000 105(2):157-166
Autor:
Bogatyi, Semeon
Publikováno v:
In Topology and its Applications 1999 93(1):73-75