Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Boettcher, Igor"'
Autor:
Dey, Santanu, Chen, Anffany, Basteiro, Pablo, Fritzsche, Alexander, Greiter, Martin, Kaminski, Matthias, Lenggenhager, Patrick M., Meyer, Rene, Sorbello, Riccardo, Stegmaier, Alexander, Thomale, Ronny, Erdmenger, Johanna, Boettcher, Igor
Publikováno v:
Phys. Rev. Lett. 133, 061603 (2024)
We demonstrate how table-top settings combining hyperbolic lattices with nonlinear dynamics universally encode aspects of the bulk-boundary-correspondence between gravity in anti-de-Sitter (AdS) space and conformal field theory (CFT). Our concrete an
Externí odkaz:
http://arxiv.org/abs/2404.03062
Publikováno v:
Phys. Rev. Lett. 133, 066101 (2024)
We study Anderson localization in disordered tight-binding models on hyperbolic lattices. Such lattices are geometries intermediate between ordinary two-dimensional crystalline lattices, which localize at infinitesimal disorder, and Bethe lattices, w
Externí odkaz:
http://arxiv.org/abs/2310.07978
Publikováno v:
Alexander J. Shook, Emil Varga, Igor Boettcher, and John P. Davis Phys. Rev. Lett. 132, 156001 (2024)
We have studied the power dependence of superfluid Helmholtz resonators in flat (750 and 1800 nm) rectangular channels. In the A-phase of superfluid 3He, we observe a non-linear response for velocities larger than a critical value. The small size of
Externí odkaz:
http://arxiv.org/abs/2310.00084
Publikováno v:
Phys. Rev. B 108, 144503 (2023)
We theoretically investigate the superfluid phase transition of helium-3 under nanoscale confinement of one spatial dimension realized in recent experiments. Instead of the 3x3 complex matrix order parameter found in the three-dimensional system, the
Externí odkaz:
http://arxiv.org/abs/2307.08808
Autor:
Stegmaier, Alexander, Brand, Hauke, Imhof, Stefan, Fritzsche, Alexander, Helbig, Tobias, Hofmann, Tobias, Boettcher, Igor, Greiter, Martin, Lee, Ching Hua, Bahl, Gaurav, Szameit, Alexander, Kießling, Tobias, Thomale, Ronny, Upreti, Lavi K.
Quantized adiabatic transport can occur when a system is slowly modulated over time. In most realizations however, the efficiency of such transport is reduced by unwanted dissipation, back-scattering, and non-adiabatic effects. In this work, we reali
Externí odkaz:
http://arxiv.org/abs/2306.15434
Autor:
Chen, Anffany, Guan, Yifei, Lenggenhager, Patrick M., Maciejko, Joseph, Boettcher, Igor, Bzdušek, Tomáš
Publikováno v:
Phys. Rev. B 108, 085114 (2023)
Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological
Externí odkaz:
http://arxiv.org/abs/2304.03273
Autor:
Chen, Anffany, Brand, Hauke, Helbig, Tobias, Hofmann, Tobias, Imhof, Stefan, Fritzsche, Alexander, Kießling, Tobias, Stegmaier, Alexander, Upreti, Lavi K., Neupert, Titus, Bzdušek, Tomáš, Greiter, Martin, Thomale, Ronny, Boettcher, Igor
Publikováno v:
Nat. Commun. 14, 622 (2023)
Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with
Externí odkaz:
http://arxiv.org/abs/2205.05106
Autor:
Urwyler, David M., Lenggenhager, Patrick M., Boettcher, Igor, Thomale, Ronny, Neupert, Titus, Bzdušek, Tomáš
Publikováno v:
Phys. Rev. Lett. 129, 246402 (2022)
Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-)dimensional momentum space. To explore
Externí odkaz:
http://arxiv.org/abs/2203.07292
Autor:
Attar, Adil, Boettcher, Igor
Publikováno v:
Phys. Rev. E 106, 034114 (2022)
We apply Selberg's trace formula to solve problems in hyperbolic band theory, a recently developed extension of Bloch theory to model band structures on experimentally realized hyperbolic lattices. For this purpose we incorporate the higher-dimension
Externí odkaz:
http://arxiv.org/abs/2201.06587
Motivated by recent experimental breakthroughs in realizing hyperbolic lattices in superconducting waveguides and electric circuits, we compute the Hofstadter butterfly on regular hyperbolic tilings. By utilizing large hyperbolic lattices with period
Externí odkaz:
http://arxiv.org/abs/2111.05779