Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Boegli, Sabine"'
We analyse how the spectrum of the anisotropic Maxwell system with bounded conductivity on a Lipschitz domain is approximated by domain truncation. First we prove a new non-convex enclosure for the spectrum of the Maxwell system, with weak assumption
Externí odkaz:
http://arxiv.org/abs/2208.13089
Autor:
Bögli, Sabine, Vuillermot, Pierre-A.
In this article we investigate the long time behavior of solutions to a class of infinitely many master equations defined from transition rates that are suitable for the description of a quantum system approaching thermodynamical equilibrium with a h
Externí odkaz:
http://arxiv.org/abs/2111.10123
Autor:
Bögli, Sabine
We improve the Lieb-Thirring type inequalities by Demuth, Hansmann and Katriel (J. Funct. Anal. 2009) for Schr\"odinger operators with complex-valued potentials. Our result involves a positive, integrable function. We show that in the one-dimensional
Externí odkaz:
http://arxiv.org/abs/2111.03938
Autor:
Bögli, Sabine, Cuenin, Jean-Claude
We prove that the Laptev--Safronov conjecture (Comm. Math. Phys., 2009) is false in the range that is not covered by Frank's positive result (Bull. Lond. Math. Soc., 2011). The simple counterexample is adaptable to a large class of Schr\"odinger type
Externí odkaz:
http://arxiv.org/abs/2109.06135
Autor:
Boegli, Sabine, Vuillermot, Pierre-A.
In this article we investigate the spectral properties of the infinitesimal generator of an infinite system of master equations arising in the analysis of the approach to equilibrium in statistical mechanics. The system under investigation thus consi
Externí odkaz:
http://arxiv.org/abs/2011.00457
Autor:
Bögli, Sabine, Štampach, František
We study to what extent Lieb--Thirring inequalities are extendable from self-adjoint to general (possibly non-self-adjoint) Jacobi and Schr\"{o}dinger operators. Namely, we prove the conjecture of Hansmann and Katriel from [Complex Anal. Oper. Theory
Externí odkaz:
http://arxiv.org/abs/2004.09794
Autor:
Bögli, Sabine, Marletta, Marco
We introduce concepts of essential numerical range for the linear operator pencil $\lambda\mapsto A-\lambda B$. In contrast to the operator essential numerical range, the pencil essential numerical ranges are, in general, neither convex nor even conn
Externí odkaz:
http://arxiv.org/abs/1909.01301
We study the spectrum of the Robin Laplacian with a complex Robin parameter $\alpha$ on a bounded Lipschitz domain $\Omega$. We start by establishing a number of properties of the corresponding operator, such as generation properties, local analytic
Externí odkaz:
http://arxiv.org/abs/1908.06041
We introduce the concept of essential numerical range $W_{\!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known f
Externí odkaz:
http://arxiv.org/abs/1907.09599
Autor:
Bögli, Sabine
We study Schr\"odinger operators $H=-\Delta+V$ in $L^2(\Omega)$ where $\Omega$ is $\mathbb R^d$ or the half-space $\mathbb R_+^d$, subject to (real) Robin boundary conditions in the latter case. For $p>d$ we construct a non-real potential $V\in L^p(\
Externí odkaz:
http://arxiv.org/abs/1605.09356