Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Boe, Brian D."'
Autor:
Boe, Brian D., Graham, William
We describe the loci of non-rationally smooth (nrs) points and of singular points for any non-spiral Schubert variety of $\tilde{A}_2$ in terms of the geometry of the (affine) Weyl group action on the plane $\mathbb{R}^2$. Together with the results o
Externí odkaz:
http://arxiv.org/abs/2407.02338
Autor:
Boe, Brian D., Kujawa, Jonathan R.
We compute the complexity, z-complexity, and support varieties of the (thick) Kac modules for the Lie superalgebras of type P. We also show the complexity and the z-complexity have geometric interpretations in terms of support and associated varietie
Externí odkaz:
http://arxiv.org/abs/2001.11310
Let $\mathfrak g$ be a complex simple Lie algebra and let $U_{\zeta}({\mathfrak g})$ be the corresponding Lusztig ${\mathbb Z}[q,q^{-1}]$-form of the quantized enveloping algebra specialized to an $\ell$th root of unity. Moreover, let $\mod(U_{\zeta}
Externí odkaz:
http://arxiv.org/abs/1702.01289
Given a complex semisimple Lie algebra ${\mathfrak g}$ and a commutative ${\mathbb C}$-algebra $A$, let ${\mathfrak g}[A] = {\mathfrak g} \otimes A$ be the corresponding generalized current algebra. In this paper we explore questions involving the co
Externí odkaz:
http://arxiv.org/abs/1511.00024
Tensor triangular geometry as introduced by Balmer is a powerful idea which can be used to extract the ambient geometry from a given tensor triangulated category. In this paper we provide a general setting for a compactly generated tensor triangulate
Externí odkaz:
http://arxiv.org/abs/1402.3732
Autor:
Bendel, Christopher P., Boe, Brian D., Drupieski, Christopher M., Nakano, Daniel K., Parshall, Brian J., Pillen, Cornelius, Wright, Caroline B.
Publikováno v:
Developments and Retrospectives in Lie Theory, Develop. Math. 38, Springer, 2014, pp. 51-69
Let $k$ be an algebraically closed field of characteristic $p > 0$, and let $G$ be a simple simply-connected algebraic group over $k$ that is defined and split over the prime field $\mathbb{F}_p$. In this paper we investigate situations where the dim
Externí odkaz:
http://arxiv.org/abs/1303.2752
Autor:
Boe, Brian D., Bonsignore, Brian, Brons, Theresa, Carlson, Jon F., Chastkofsky, Leonard, Drupieski, Christopher M., Johnson, Niles, Nakano, Daniel K., Li, Wenjing, Luu, Phong Thanh, Macedo, Tiago, Ngo, Nham Vo, Samples, Brandon L., Talian, Andrew J., Townsley, Lisa, Wyser, Benjamin J.
Publikováno v:
J. Algebra 360 (2012), 21-52
Let $G$ be a simple, simply-connected algebraic group defined over $\mathbb{F}_p$. Given a power $q = p^r$ of $p$, let $G(\mathbb{F}_q) \subset G$ be the subgroup of $\mathbb{F}_q$-rational points. Let $L(\lambda)$ be the simple rational $G$-module o
Externí odkaz:
http://arxiv.org/abs/1110.0228
Publikováno v:
Compositio Math. 148 (2012) 1561-1592
Let $\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus \mathfrak{g}_{\bar{1}}$ be a classical Lie superalgebra and $\mathcal{F}$ be the category of finite dimensional $\mathfrak{g}$-supermodules which are completely reducible over the reductive Lie algebra $
Externí odkaz:
http://arxiv.org/abs/1107.2579
Autor:
Boe, Brian D., Brunyate, Adrian M., Carlson, Jon F., Chastkofsky, Leonard, Drupieski, Christopher M., Johnson, Niles, Jones, Benjamin F., Li, Wenjing, Nakano, Daniel K., Ngo, Nham Vo, Nguyen, Duc Duy, Samples, Brandon L., Talian, Andrew J., Townsley, Lisa, Wyser, Benjamin J.
Publikováno v:
Trans. Amer. Math Soc. 365 (2013), 1025-1050
Let $k$ be an algebraically closed field of characteristic $p > 0$, and let $G$ be a simple, simply connected algebraic group defined over $\mathbb{F}_p$. Given $r \geq 1$, set $q=p^r$, and let $G(\mathbb{F}_q)$ be the corresponding finite Chevalley
Externí odkaz:
http://arxiv.org/abs/1010.1203
Let g=g_{0} \oplus g_{1} be a classical Lie superalgebra and F be the category of finite dimensional g-supermodules which are semisimple over g_{0}. In this paper we investigate the homological properties of the category F. In particular we prove tha
Externí odkaz:
http://arxiv.org/abs/0905.2403