Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Bodil Kavli"'
Autor:
Nina B. Liabakk, Geir Slupphaug, Bodil Kavli, Tobias S Obermann, Tobias S. Iveland, Lars Hagen, Edith Buchinger, Per Arne Aas, Finn Lillelund Aachmann
Publikováno v:
Nucleic Acids Research
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2–3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to pr
Autor:
Anna Kusnierczyk, Per Arne Aas, Bodil Kavli, Renana Rabe, Finn Lillelund Aachmann, Geir Slupphaug, Siv Åshild Wiik, Edith Buchinger
Publikováno v:
Biomolecular NMR Assignments. 12:15-22
Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the back
Autor:
Nina-Beate Liabakk, Mirta M. L. Sousa, Per Arne Aas, Robin Mjelle, Marie Benner Lundbæk, Lars Hagen, Antonio Sarno, Hans E. Krokan, Bodil Kavli
Publikováno v:
Nucleic Acids Research
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cb7489391aa2e45740531389b1dcc7e
https://hdl.handle.net/11250/2619516
https://hdl.handle.net/11250/2619516
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6eeb74beb09bbf61a975558f388538b2
https://doi.org/10.1142/9789813233508_0004
https://doi.org/10.1142/9789813233508_0004
Autor:
Geir Slupphaug, Bodil Kavli
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1fba8a2a2cdf7daaf869118292d1056c
https://doi.org/10.1142/9789813233508_0006
https://doi.org/10.1142/9789813233508_0006
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e5ed0b1b9699848a08935a47eb197f40
https://doi.org/10.1142/9789813233508_0005
https://doi.org/10.1142/9789813233508_0005
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1bc64ec96f09cf646a5badd84b308d87
https://doi.org/10.1142/9789813233508_0003
https://doi.org/10.1142/9789813233508_0003
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a5cc274384b0c3d8a3ec2ce12f9903bf
https://doi.org/10.1142/9789813233508_0001
https://doi.org/10.1142/9789813233508_0001
Publikováno v:
Genomic Uracil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7788a7bd6e8e75418c154bc58c61f2a5
https://doi.org/10.1142/9789813233508_0002
https://doi.org/10.1142/9789813233508_0002
Autor:
Khac Thanh Phong Chau, Carole Beck, Bodil Kavli, Mengtan Xing, Nina-Beate Liabakk, Raquel Gago-Fuentes, Siri Sæterstad, Per Arne Aas, Valentyn Oksenych, Alisa Elinsdatter Dewan, Marie Benner Lundbæk
Publikováno v:
FEBS Open Bio
To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de765e211324d7b47d22a2828c8ec99f
http://hdl.handle.net/11250/2486767
http://hdl.handle.net/11250/2486767