Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Bob D. De Vos"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Abstract Label noise hampers supervised training of neural networks. However, data without label noise is often infeasible to attain, especially for medical tasks. Attaining high-quality medical labels would require a pool of experts and their consen
Externí odkaz:
https://doaj.org/article/3e6d116ef6854261b54045fedd718295
Autor:
Dennis Van Erck, Pim Moeskops, Josje D. Schoufour, Peter J. M. Weijs, Wilma J. M. Scholte Op Reimer, Martijn S. Van Mourik, Yvonne C. Janmaat, R. Nils Planken, Marije Vis, Jan Baan, Robert Hemke, Ivana Išgum, José P. Henriques, Bob D. De Vos, Ronak Delewi
Publikováno v:
Frontiers in Nutrition, Vol 9 (2022)
BackgroundManual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate full
Externí odkaz:
https://doaj.org/article/57e2f64545ed479b80a5637dd2036b14
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-19 (2020)
Abstract Segmentation of cardiac anatomical structures in cardiac magnetic resonance images (CMRI) is a prerequisite for automatic diagnosis and prognosis of cardiovascular diseases. To increase robustness and performance of segmentation methods this
Externí odkaz:
https://doaj.org/article/d0ad7ca897184f47b52c544724f78830
Autor:
Mimount, Bourfiss, Jörg, Sander, Bob D, de Vos, Anneline S J M, Te Riele, Folkert W, Asselbergs, Ivana, Išgum, Birgitta K, Velthuis
Publikováno v:
Clinical research in cardiology : official journal of the German Cardiac Society.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diagnosed according to the Task Force Criteria (TFC) in which cardiovascular magnetic resonance (CMR) imaging plays an important role. Our study aims to apply an automatic deep learning-based
Autor:
Richard A.P. Takx, Max A. Viergever, Elbrich M. Postma, Bob D. de Vos, Jelmer M. Wolterink, Tim Leiner, Ivana Išgum, Julia M. H. Noothout, Paul A.M. Smeets
Publikováno v:
IEEE Transactions on Medical Imaging, 39(12), 4011-4022
IEEE transactions on medical imaging, 39(12):9139480, 4011-4022. Institute of Electrical and Electronics Engineers Inc.
IEEE Transactions on Medical Imaging 39 (2020) 12
IEEE transactions on medical imaging, 39(12):9139480, 4011-4022. IEEE
IEEE transactions on medical imaging, 39(12):9139480, 4011-4022. Institute of Electrical and Electronics Engineers Inc.
IEEE Transactions on Medical Imaging 39 (2020) 12
IEEE transactions on medical imaging, 39(12):9139480, 4011-4022. IEEE
In this study, we propose a fast and accurate method to automatically localize anatomical landmarks in medical images. We employ a global-to-local localization approach using fully convolutional neural networks (FCNNs). First, a global FCNN localizes
Publikováno v:
Artificial Intelligence in Cardiothoracic Imaging ISBN: 9783030920869
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2c8982fb9cd30d4c6dafb7706accd4c
https://doi.org/10.1007/978-3-030-92087-6_24
https://doi.org/10.1007/978-3-030-92087-6_24
Autor:
Dennis Van Erck, Pim Moeskops, Josje D. Schoufour, Peter J. M. Weijs, Wilma J. M. Scholte Op Reimer, Martijn S. Van Mourik, Yvonne C. Janmaat, R. Nils Planken, Marije Vis, Jan Baan, Robert Hemke, Ivana Išgum, José P. Henriques, Bob D. De Vos, Ronak Delewi
Publikováno v:
Frontiers in Nutrition, 9:781860, 1-8. Frontiers Media S.A.
Frontiers in Nutrition, 9:781860. Frontiers Media S.A.
van Erck, D, Moeskops, P, Schoufour, J D, Weijs, P J M, Scholte op Reimer, W J M, van Mourik, M S, Janmaat, Y C, Planken, R N, Vis, M, Baan, J, Hemke, R, Išgum, I, Henriques, J P, de Vos, B D & Delewi, R 2022, ' Evaluation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area ', Frontiers in Nutrition, vol. 9, 781860 . https://doi.org/10.3389/fnut.2022.781860
Frontiers in Nutrition, 9:781860. Frontiers Media S.A.
van Erck, D, Moeskops, P, Schoufour, J D, Weijs, P J M, Scholte op Reimer, W J M, van Mourik, M S, Janmaat, Y C, Planken, R N, Vis, M, Baan, J, Hemke, R, Išgum, I, Henriques, J P, de Vos, B D & Delewi, R 2022, ' Evaluation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area ', Frontiers in Nutrition, vol. 9, 781860 . https://doi.org/10.3389/fnut.2022.781860
BackgroundManual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate full
Autor:
Tim Leiner, Nikolas Lessmann, Bob D. de Vos, Pim A. de Jong, Ivana Išgum, Jelmer M. Wolterink
Publikováno v:
IEEE Transactions on Medical Imaging. 38:2127-2138
Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet demands of the increasing interest in quantification of CAC, i.e. coronary calcium scoring,
Publikováno v:
Radiology: Cardiothoracic Imaging, 3
Radiology: Cardiothoracic Imaging, 3(2):e190219. Radiological Society of North America Inc.
Radiol Cardiothorac Imaging
Radiology. Cardiothoracic imaging, 3(2):e190219. Radiological Society of North America Inc.
Radiology: Cardiothoracic Imaging, 3, 2
Radiology: Cardiothoracic Imaging, 3(2):e190219. Radiological Society of North America Inc.
Radiol Cardiothorac Imaging
Radiology. Cardiothoracic imaging, 3(2):e190219. Radiological Society of North America Inc.
Radiology: Cardiothoracic Imaging, 3, 2
Contains fulltext : 235733.pdf (Publisher’s version ) (Closed access) Purpose: To examine the prognostic value of location-specific arterial calcification quantities at lung screening low-dose CT for the prediction of cardiovascular disease (CVD) m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a9c9c9a893d6b499ee9fbfc8c3a4ae2
http://hdl.handle.net/2066/235733
http://hdl.handle.net/2066/235733
Publikováno v:
Scientific Reports
Scientific Reports, Vol 10, Iss 1, Pp 1-19 (2020)
Scientific reports, 10(1):21769. Nature Publishing Group
Scientific Reports, Vol 10, Iss 1, Pp 1-19 (2020)
Scientific reports, 10(1):21769. Nature Publishing Group
Segmentation of cardiac anatomical structures in cardiac magnetic resonance images (CMRI) is a prerequisite for automatic diagnosis and prognosis of cardiovascular diseases. To increase robustness and performance of segmentation methods this study co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d512c1b5711d52a5993ac20b56a4f4e
https://doi.org/10.1038/s41598-020-77733-4
https://doi.org/10.1038/s41598-020-77733-4