Zobrazeno 1 - 10
of 2 633
pro vyhledávání: '"Blocking set"'
A blocking set in an affine plane is a set of points $B$ such that every line contains at least one point of $B$. The best known lower bound for blocking sets in arbitrary (non-desarguesian) affine planes was derived in the 1980's by Bruen and Silver
Externí odkaz:
http://arxiv.org/abs/1804.09511
Autor:
Nada Kasm Yahya, Zyiad Hamad Youines
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 13, Iss 2, Pp 13-25 (2019)
In this paper we give a geometrical construction of a ( 56, 2)-blocking set in PG( 2, 19) and We obtain a new (325,18)- arc and a new linear code and apply the Grismer rule so that we prove it an optimal or non-optimal code, giving some examples of f
Externí odkaz:
https://doaj.org/article/6fe803ae25994258a53afc8c6a8a0630
In this paper, we show that a small minimal blocking set with exponent e in PG(n,p^t), p prime, spanning a (t/e-1)-dimensional space, is an F_p^e-linear set, provided that p>5(t/e)-11. As a corollary, we get that all small minimal blocking sets in PG
Externí odkaz:
http://arxiv.org/abs/1210.1003
Autor:
Nada Yahya, Hiba najem
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 11, Iss 1, Pp 43-60 (2014)
We proved that(rq-q+r-ɛ,r)-arcs is incomplete by using minimal {ℓ,t}-Blocking set in projective plane PG(2,q)and we found a new condition for ɛ is ɛ ≥-A(r-1)2+B(r-1)-C and A,B,C is a constant which is not get previously in studies which is sea
Externí odkaz:
https://doaj.org/article/b17fa6f8c0bf4469b1c78d24c035077a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Amani Al-Salim
Publikováno v:
مجلة التربية والعلم, Vol 25, Iss 3, Pp 191-205 (2012)
Abstract A blocking set B in projective plane PG(2,q) is a set of points such that every line in the plane intersect B in at least one point and there exist a line intersect B in only one point, we say that B is minimal if B has no blocking subset. I
Externí odkaz:
https://doaj.org/article/b7837141563d41fba46887228feae7ec
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 13, Iss 2, Pp 13-25 (2019)
In this paper we give a geometrical construction of a ( 56, 2)-blocking set in PG( 2, 19) and We obtain a new (325,18)- arc and a new linear code and apply the Grismer rule so that we prove it an optimal or non-optimal code, giving some examples of f
Autor:
Van Maldeghem, Hendrik1 (AUTHOR) hendrik.vanmaldeghem@ugent.be
Publikováno v:
Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3720. 11p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Farah Kadoo
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 7, Iss 2, Pp 77-88 (2010)
A blocking set B in projective plane PG (2, ) in a set of points such that every line in the plane intersect B in at least one point and there exist a line intersect B in only one point, we say that B is minimal if B has no minimal blocking subset. I
Externí odkaz:
https://doaj.org/article/264c9260cdec49eb994e0f588dcd2172