Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Blinkov, Yuri A."'
For a wide class of polynomially nonlinear systems of partial differential equations we suggest an algorithmic approach that combines differential and difference algebra to analyze s(trong)-consistency of finite difference approximations. Our approac
Externí odkaz:
http://arxiv.org/abs/2009.01731
Publikováno v:
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика, Vol 21, Iss 4, Pp 472-488 (2021)
The concept of the first differential approximation was introduced in the 1950s for the analysis of difference schemes by A. I. Zhukov and then was used to study the quality of difference schemes approximating equations in partial derivatives. In th
Externí odkaz:
https://doaj.org/article/62d9a3b45b9444da8585aed0170c30fe
Publikováno v:
SIGMA 2 (2006), 051, 26 pages
In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by ex
Externí odkaz:
http://arxiv.org/abs/math/0605334
Autor:
Gerdt, Vladimir P., Blinkov, Yuri A.
We consider three modifications of our involutive algorithm for computing Janet bases. These modifications are related to degree compatible monomial orders and specify selection strategies for non-multiplicative prolongations. By using the standard d
Externí odkaz:
http://arxiv.org/abs/math/0603161
Autor:
Gerdt, Vladimir P., Blinkov, Yuri A.
In this paper we present a version of the general polynomial involutive algorithm for computing Janet bases specialized to toric ideals. The relevant data structures are Janet trees which provide a very fast search for a Janet divisor. We broach also
Externí odkaz:
http://arxiv.org/abs/math/0501180
Autor:
Gerdt, Vladimir P., Blinkov, Yuri A.
Publikováno v:
Mathematics and Computers in Simulation 45 (1998) 543-560
In this paper we present an algorithm for construction of minimal involutive polynomial bases which are Groebner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to
Externí odkaz:
http://arxiv.org/abs/math/9912029
Autor:
Gerdt, Vladimir P., Blinkov, Yuri A.
Publikováno v:
Mathematics and Computers in Simulation 45 (1998) 519-542
In this paper we consider an algorithmic technique more general than that proposed by Zharkov and Blinkov for the involutive analysis of polynomial ideals. It is based on a new concept of involutive monomial division which is defined for a monomial s
Externí odkaz:
http://arxiv.org/abs/math/9912027
Autor:
Gusev, Alexander A., Chuluunbaatar, Galmandakh, Chuluunbaatar, Ochbadrakh, Vinitsky, Sergue I., Blinkov, Yuri A., Deveikis, Algirdas, Hess, Peter O., Hai, Luong Le
Publikováno v:
Mathematics in Computer Science; Dec2023, Vol. 17 Issue 3/4, p1-15, 15p
Autor:
Blinkov, Yuri1 BlinkovUA@info.sgu.ru, Gerdt, Vladimir2 gerdt@jinr.ru, Marinov, Konstantin3 marinov.kohctahtih@gmail.com
Publikováno v:
EPJ Web of Conferences. 2018, Vol. 173, p1-4. 4p. 1 Graph.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.