Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Bleile, Beatrice"'
Autor:
Bleile, Beatrice
In earlier work we presented necessary conditions for a fundamental triple to be that of a 3-dimensional Poincar\'e duality pair with aspherical boundary components. We provide a construction which shows that the necessary conditions are sufficient.<
Externí odkaz:
http://arxiv.org/abs/2207.14054
Publikováno v:
Algebraic and Geometric Topology 18 (2018), 3749--3788
Turaev conjectured that the classification, realization and splitting results for Poincar\'e duality complexes of dimension $3$ (PD$_{3}$-complexes) generalize to PD$_{n}$-complexes with $(n-2)$-connected universal cover for $n \ge 3$. Baues and Blei
Externí odkaz:
http://arxiv.org/abs/1605.00096
Autor:
Bleile, Beatrice, Bokor, Imre
Publikováno v:
Algebr. Geom. Topol. 18 (2018) 3749-3788
Baues and Bleille showed that, up to oriented homotopy equivalence, a Poincare duality complex of dimension $n \ge 3$ with $(n-2)$-connected universal cover, is classified by its fundamental group, orientation class and the image of its fundamental c
Externí odkaz:
http://arxiv.org/abs/1509.01928
Autor:
Baues, Hans-Joachim, Bleile, Beatrice
It is well-known how to compute the structure of the second homotopy group of a space, $X$, as a module over the fundamental group, $\pi_1X$, using the homology of the universal cover and the Hurewicz isomorphism. We describe a new method to compute
Externí odkaz:
http://arxiv.org/abs/1309.6510
Autor:
Baues, Hans-Joachim, Bleile, Beatrice
We compute the monoid of essential self-maps of of the product of two n-spheres fixing the diagonal. More generally, we consider products S x S, where S is a suspension. Essential self-maps of S x S demonstrate the interplay between the pinching acti
Externí odkaz:
http://arxiv.org/abs/1007.4254
Autor:
Baues, Hans-Joachim, Bleile, Beatrice
We compare the structure of a mapping cone in the category Top^D of spaces under a space D with differentials in algebraic models like crossed complexes and quadratic complexes. Several subcategories of Top^D are identified with algebraic categories.
Externí odkaz:
http://arxiv.org/abs/1005.4810
Autor:
Baues, Hans Joachim, Bleile, Beatrice
Publikováno v:
Algebr. Geom. Topol. 8 (2008) 2355-2389
We describe an algebraic structure on chain complexes yielding algebraic models which classify homotopy types of Poincare duality complexes of dimension 4. Generalizing Turaev's fundamental triples of Poincare duality complexes of dimension 3, we int
Externí odkaz:
http://arxiv.org/abs/0802.3652
Autor:
Bleile, Beatrice
We extend Hendriks' classification theorem and Turaev's realisation and splitting theorems for Poincare duality complexes in dimension three to the relative case of Poincare duality pairs. The results for Poincare duality complexes are recovered by r
Externí odkaz:
http://arxiv.org/abs/0704.2107
Autor:
Baues, Hans-Joachim, Bleile, Beatrice
Publikováno v:
In Topology and its Applications 2011 158(16):2198-2204
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.