Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Blasso"'
Publikováno v:
Ciência Rural, Vol 52, Iss 5 (2021)
ABSTRACT: Splitting the whole dataset into training and testing subsets is a crucial part of optimizing models. This study evaluated the influence of the choice of the training subset in the construction of predictive models, as well as on their vali
Externí odkaz:
https://doaj.org/article/fb3899b0c0444213993fe4653b55f3db
Autor:
Leísa Pires Lima, Camila Ferreira Azevedo, Marcos Deon Vilela de Resende, Fabyano Fonseca e Silva, José Marcelo Soriano Viana, Eder Jorge de Oliveira
Publikováno v:
Scientia Agricola, Vol 76, Iss 5, Pp 368-375 (2019)
ABSTRACT: Genome-wide selection (GWS) is currently a technique of great importance in plant breeding, since it improves efficiency of genetic evaluations by increasing genetic gains. The process is based on genomic estimated breeding values (GEBVs) o
Externí odkaz:
https://doaj.org/article/44b6a3e382fa47ca8e9597e56f025d9f
Autor:
Patricia Mendes dos Santos, Ana Carolina Campana Nascimento, Moysés Nascimento, Fabyano Fonseca e Silva, Camila Ferreira Azevedo, Rodrigo Reis Mota, Simone Eliza Facioni Guimarães, Paulo Sávio Lopes
Publikováno v:
Pesquisa Agropecuária Brasileira, Vol 53, Iss 9, Pp 1011-1017 (2018)
Abstract: The objective of this work was to evaluate the use of regularized quantile regression (RQR) to predict the genetic merit of pigs for asymmetric carcass traits, compared with the Bayesian lasso (Blasso) method. The genetic data of the traits
Externí odkaz:
https://doaj.org/article/af6b9cbcdbc34ba293c9bca91f24a5e5
Publikováno v:
Pesquisa Agropecuária Brasileira, Vol 51, Iss 12, Pp 1973-1982 (2016)
Resumo: O objetivo deste trabalho foi avaliar a influência da distribuição dos efeitos de QTL, do tipo de população de validação e da correção dos fenótipos sobre a acurácia da seleção genômica ampla. Duas populações de irmãos comple
Externí odkaz:
https://doaj.org/article/59efab434e37436693379e2453afc79b
Publikováno v:
Foundations of Computational Mathematics
Foundations of Computational Mathematics, 2023, 23, pp.241-327. ⟨10.1007/s10208-021-09545-5⟩
Poon, C, Keriven, N & Peyré, G 2023, ' The geometry of off-the-grid compressed sensing ', Foundations of Computational Mathematics, vol. 23, pp. 241-327 . https://doi.org/10.1007/s10208-021-09545-5
Foundations of Computational Mathematics, Springer Verlag, In press, ⟨10.1007/s10208-021-09545-5⟩
Foundations of Computational Mathematics, Springer Verlag, 2021
Foundations of Computational Mathematics, 2023, 23, pp.241-327. ⟨10.1007/s10208-021-09545-5⟩
Poon, C, Keriven, N & Peyré, G 2023, ' The geometry of off-the-grid compressed sensing ', Foundations of Computational Mathematics, vol. 23, pp. 241-327 . https://doi.org/10.1007/s10208-021-09545-5
Foundations of Computational Mathematics, Springer Verlag, In press, ⟨10.1007/s10208-021-09545-5⟩
Foundations of Computational Mathematics, Springer Verlag, 2021
Compressed sensing (CS) ensures the recovery of sparse vectors from a number of randomized measurements proportional to their sparsity. The initial theory considers discretized domains, and the randomness makes the physical positions of the grid node
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In genome-wide association studies (GWAS), hundreds of thousands single-nucleotide polymorphisms (SNPs) are genotyped for several hundreds of individuals. Usually, only a very smaller subset of these markers is associated with the trait. Existing met
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6911629123d1f409d8204feafaee95a0
Publikováno v:
Ciência Rural, Vol 52, Iss 5 (2021)
Ciência Rural v.52 n.5 2022
Ciência Rural
Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
Ciência Rural, Volume: 52, Issue: 5, Article number: e20201072, Published: 29 OCT 2021
Ciência Rural v.52 n.5 2022
Ciência Rural
Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
Ciência Rural, Volume: 52, Issue: 5, Article number: e20201072, Published: 29 OCT 2021
Splitting the whole dataset into training and testing subsets is a crucial part of optimizing models. This study evaluated the influence of the choice of the training subset in the construction of predictive models, as well as on their validation. Fo
Autor:
Lénaïc Chizat
Minimizing a convex function of a measure with a sparsity-inducing penalty is a typical problem arising, e.g., in sparse spikes deconvolution or two-layer neural networks training. We show that this problem can be solved by discretizing the measure a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b7a0184ea9ea723f00465325463146c
https://hal.archives-ouvertes.fr/hal-02190822
https://hal.archives-ouvertes.fr/hal-02190822
Autor:
Catala, Paul
Publikováno v:
Mathematics [math]. Ecole Normale Supérieure, 2020. English
This thesis proposes theoretical and algorithmic advances for positive semi-definite relaxations and their applications in data science. These so-called Lasserre’s hierarchies allow one to solve super-resolution problems without resorting to spatia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::1545584d3ee73d5cb4994e2f7f7a291e
https://tel.archives-ouvertes.fr/tel-03131464/file/thesis.pdf
https://tel.archives-ouvertes.fr/tel-03131464/file/thesis.pdf