Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Blasco, Angel"'
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Let ${\cal P}(t)\in {\Bbb K}(t)^{n}$ be a rational parametrization of an algebraic space curve $\cal C$. In this paper, we introduce the notion of limit point, $P_L$, of the given parametrization $\mathcal{P}(t)$, and some remarkable properties of $P
Externí odkaz:
http://arxiv.org/abs/1706.09291
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Let ${\cal C}$ be an algebraic space curve defined parametrically by ${\cal P}(t)\in {\Bbb K}(t)^{n},\,n\geq 2$. In this paper, we introduce a polynomial, the T--function, $T(s)$, which is defined by means of a univariate resultant constructed from $
Externí odkaz:
http://arxiv.org/abs/1706.08430
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
In Journal of Computational and Applied Mathematics 15 January 2020 364
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
Journal of Computational and Applied Mathematics. Volume 280, pp. 327-346. (2015)
In this paper, we present a characterization for the Hausdorff distance between two given algebraic curves in the $n$-dimensional space (parametrically or implicitly defined) to be finite. The characterization is related with the asymptotic behavior
Externí odkaz:
http://arxiv.org/abs/1407.4338
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
Journal of Computational and Applied Mathematics. Volume 278, pp, 231-247. (2015)
In this paper, we generalize the results presented in [5] for the case of real algebraic space curves. More precisely, given an algebraic space curve C (parametrically or implicitly defined), we show how to compute the generalized asymptotes. The app
Externí odkaz:
http://arxiv.org/abs/1404.6380
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
Computer Aided Geometric Design. Volume 31, Issue 2, pp. 81-96. (2014)
We develop a method for computing all the {\it generalized asymptotes} of a real plane algebraic curve $\cal C$ over $\Bbb C$ implicitly defined by an irreducible polynomial $f(x,y)\in {\Bbb R}[x,y]$. The approach is based on the notion of perfect cu
Externí odkaz:
http://arxiv.org/abs/1307.6153
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
In Journal of Symbolic Computation September-October 2019 94:30-51
Autor:
Pérez-Díaz, Sonia, Blasco, Angel
Publikováno v:
In Advances in Applied Mathematics September 2019 110:270-298
Autor:
Blasco, Angel, Pérez-Díaz, Sonia
Publikováno v:
In Computer Aided Geometric Design January 2019 68:22-47
Autor:
Pérez-Díaz, Sonia, Blasco, Angel
Publikováno v:
In Journal of Computational and Applied Mathematics 1 August 2015 283:91-105