Zobrazeno 1 - 10
of 266
pro vyhledávání: '"Blanco, Mónica"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Seminars in Immunology November 2023 70
Autor:
Baris, Safa, Benamar, Mehdi, Chen, Qian, Catak, Mehmet Cihangir, Martínez-Blanco, Mónica, Wang, Muyun, Fong, Jason, Massaad, Michel J., Sefer, Asena Pinar, Kara, Altan, Babayeva, Royala, Eltan, Sevgi Bilgic, Yucelten, Ayse Deniz, Bozkurtlar, Emine, Cinel, Leyla, Karakoc-Aydiner, Elif, Zheng, Yumei, Wu, Hao, Ozen, Ahmet, Schmitz-Abe, Klaus, Chatila, Talal A.
Publikováno v:
In The Journal of Allergy and Clinical Immunology July 2023 152(1):182-194
Autor:
Blanco, Mónica, Santos, Francisco
Publikováno v:
J. Combin. Th., Ser. A. 161 (January 2019), 112-133
We completely classify non-spanning $3$-polytopes, by which we mean lattice $3$-polytopes whose lattice points do not affinely span the lattice. We show that, except for six small polytopes (all having between five and eight lattice points), every no
Externí odkaz:
http://arxiv.org/abs/1711.07603
Publikováno v:
Transactions of the Amer. Math. Soc. Ser. B 8 (April 2021), 399-419
We prove that in each dimension $d$ there is a constant $w^\infty(d)\in \mathbb{N}$ such that for every $n\in \mathbb{N}$ all but finitely many $d$-polytopes with $n$ lattice points have width at most $w^\infty(d)$. We call $w^\infty(d)$ the finitene
Externí odkaz:
http://arxiv.org/abs/1607.00798
Autor:
Blanco, Mónica, Santos, Francisco
Publikováno v:
Discrete Comput. Geom. 60:3 (2018), 756-800
We develop a procedure for the complete computational enumeration of lattice $3$-polytopes of width larger than one, up to any given number of lattice points. We also implement an algorithm for doing this and enumerate those with at most eleven latti
Externí odkaz:
http://arxiv.org/abs/1601.02577
Autor:
Blanco, Mónica, Santos, Francisco
Publikováno v:
SIAM J. Discrete Math. 30(2) (2016) , 687-717
We classify lattice $3$-polytopes of width larger than one and with exactly $6$ lattice points. We show that there are $74$ polytopes of width $2$, two polytopes of width $3$, and none of larger width. We give explicit coordinates for representatives
Externí odkaz:
http://arxiv.org/abs/1501.01055
Autor:
Blanco, Mónica, Santos, Francisco
Publikováno v:
SIAM J. Discrete Math. 30(2) (2016), 669-686
We extend White's classification of empty tetrahedra to the complete classification of lattice $3$-polytopes with five lattice points, showing that, apart from infinitely many of width one, there are exactly nine equivalence classes of them with widt
Externí odkaz:
http://arxiv.org/abs/1409.6701
Autor:
Ballesteros Larrotta, Daniel Raúl1 danielball22@gmail.com, Ramírez Blanco, Mónica Alexandra2, Rueda Quijano, Angélica María3, Guzmán Cruz, Jammes Alberto4, Ballesteros Acuña, Luis Ernesto5
Publikováno v:
International Journal of Morphology. 2023, Vol. 41 Issue 1, p319-323. 5p.