Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Björn Sommerfeldt"'
Autor:
Rainer Buchholz, Joachim Hornegger, Firas Mualla, S. Schoell, Andreas Maier, Stefan Steidl, Björn Sommerfeldt
Publikováno v:
Journal of Microscopy. 254:65-74
Summary Autofocusing is essential to high throughput microscopy and live cell imaging and requires reliable focus measures. Phase objects such as separated single Chinese hamster ovary cells are almost invisible at the optical focus position in brigh
Autor:
Firas Mualla, Andreas Maier, Stefan Steidl, Joachim Hornegger, Simon Schöll, Björn Sommerfeldt, Rainer Buchholz
Publikováno v:
International Journal of Computer Assisted Radiology and Surgery. 9:379-386
Several cell detection approaches which deal with bright-field microscope images utilize defocusing to increase image contrast. The latter is related to the physical light phase through the transport of intensity equation (TIE). Recently, it was show
Publikováno v:
IEEE Transactions on Medical Imaging. 32:2274-2286
We present a novel machine learning-based system for unstained cell detection in bright-field microscope images. The system is fully automatic since it requires no manual parameter tuning. It is also highly invariant with respect to illumination cond
Autor:
Firas, Muallal, Simon, Schöll, Björn, Sommerfeldt, Andreas, Maier, Stefan, Steidl, Rainer, Buchholz, Joachim, Hornegger
Publikováno v:
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 17(Pt 3)
We propose a novel unstained cell detection algorithm based on unsupervised learning. The algorithm utilizes the scale invariant feature transform (SIFT), a self-labeling algorithm, and two clustering steps in order to achieve high performance in ter
Autor:
Simon Schöll, Björn Sommerfeldt, Joachim Hornegger, Rainer Buchholz, Stefan Steidl, Firas Mualla
Publikováno v:
ISBI
Scopus-Elsevier
Scopus-Elsevier
Publikováno v:
International Multidisciplinary Microscopy Congress ISBN: 9783319046389
One of the biggest technical challenges in live cell imaging is to keep the cells in a healthy state while imaging them. In fact, being able to observe living cells in their cultivation environment over time is a major step to understand and diagnose
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bd16367c8e215f17d9818b384344578a
https://doi.org/10.1007/978-3-319-04639-6_37
https://doi.org/10.1007/978-3-319-04639-6_37
Autor:
Andreas Maier, Simon Schöll, Björn Sommerfeldt, Rainer Buchholz, Firas Mualla, Stefan Steidl, Joachim Hornegger
Publikováno v:
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 ISBN: 9783319104423
MICCAI (3)
MICCAI (3)
We propose a novel unstained cell detection algorithm based on unsupervised learning. The algorithm utilizes the scale invariant feature transform (SIFT), a self-labeling algorithm, and two clustering steps in order to achieve high performance in ter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3ea6970648a2e96667bbd83233e31549
https://doi.org/10.1007/978-3-319-10443-0_48
https://doi.org/10.1007/978-3-319-10443-0_48
Publikováno v:
Bildverarbeitung für die Medizin 2013 ISBN: 9783642364792
Bildverarbeitung für die Medizin
Bildverarbeitung für die Medizin
Some cell detection approaches which deal with bright-field microscope images utilize defocussing to increase the image contrast. The latter is related to the physical light phase through the transport of intensity equation (TIE). Recently, it was sh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf73f39203d8b79a4b9610bfe6d607fa
https://doi.org/10.1007/978-3-642-36480-8_31
https://doi.org/10.1007/978-3-642-36480-8_31